MUSE 3D Spectroscopy and Kinematics of the Interacting Radio Galaxy PKS 1934-63 Nathan Roche et al.

Instituto de Astrofísica e Ciências do Espaço, Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal. nathan.roche@astro.up.pt

Abstract

We observed the radio galaxy PKS 1934-63 (at z = 0.1825) using MUSE (Multi Unit Spectroscopic Explorer) on the VLT. This is a GigaHertz Peaked Source believed on the basis of very compact radio morphology (0.13 kpc aligned E-W) to be in a very early stage of evolution [1,2]. Our imaging and spectroscopy show an interacting pair of galaxies separated by 9.1 kpc and 216 km s⁻¹. The AGN host is a $10^{11} M_{\odot}$ elliptical and the companion galaxy a probable disk-type with extended star-formation visible in H α . We map the kinematics in H α and other lines, find rapid rotation in both galaxies and verify the interaction is prograde-prograde. The fast rotation seen in H α for the primary galaxy may be a sign of star-formation around the AGN. This is probably the first close passage of the two galaxies, which trigged star-formation (in both?) from $\sim 10-20$ Myr ago, followed by the radio outburst.

Observational Data

Kinematics

For the Science Verification run of the new MUSE spectrograph on the European Southern Observatory VLT we proposed observations of the radio galaxy PKS 1934-63, which were taken in June 2014, 6 exposures totalling 4040s. These we reduced and combined into a datacube which had continuous 3D imaging/spectroscopy over 1×1 arcmin, with 0.2 arcsec spatial and 1.25Å spectral pixels, coverage 4800–9300Å.

Imaging/Morphology

Like many radio galaxies PKS 1934-63 is interacting and has visible tidal features [3,4,5]. From the MUSE datacube we extract narrowband images in $H\alpha$ and other lines.

The primary galaxy/AGN shows many emission lines, [OIII]5007 the strongest. There is a high $[OIII]5007/H\beta$ ratio (7.8) but also high ratios of [OI]6300 and [OIII]4363 to [OIII]5007 (0.56 and 0.047), which are characteristic of young radioloud AGN (rather than typical Seyferts)[6].

With the MUSE data we map the line-of-sight velocity shift in $H\alpha$ and other lines, revealing the rotation of the two galaxies as well as their relative velocity $\Delta(v) = 216 \text{ km s}^{-1}$. They are all in a similar direction (SE to NW) making this a prograde-prograde merger.

MUSE image of PKS 1934-63 in a broad red band (6400-8000Å), showing 12×9 arcsec.

Continuum-subtracted H α (7750–7774Å) image of PKS 1934-63, the bright primary galaxy hosting the AGN and the more irregular companion galaxy to the right (west). Nuclei are separated by 2.96 arcsec (9.10 kpc), on a PA -77.0° . Integrating the profiles gave total $H\alpha$ fluxes $8.6 \times 10^{-15} \text{ erg cm}^{-2} \text{s}^{-1} (\text{L}_{\text{H}\alpha} = 10^{41.91} \text{ erg})$ s^{-1}) for the primary (AGN) and 3.5×10^{-16} erg $cm^{-2}s^{-1}$ (L_{H α} = 10^{40.52} erg s⁻¹) for the second galaxy, which has no evidence of an AGN but the H α signifies star-formation activity, at a rate $0.16-0.55 \text{ M}_{\odot} \text{yr}^{-1}$.

age stellar population typical of an elliptical, plus ~ $10^7 M_{\odot}$ of young (< 20 Myr) stars.

The star-forming companion galaxy spectrum is fitted by 1-10 Gyr old (mean 4 Gyr) stars plus a few $10^6 M_{\odot}$ of very young (<20 Myr) stars. No evidence (e.g. strong H δ absorption) of any previous starburst (30 Myr-1 Gyr ago).

Rotation curves of the two galaxies (in $H\alpha$ and other lines) measured along the kinematic axis, determined as position angle -45° for the primary and -34° for the companion, which has the $\geq 100 \text{ km s}^{-1}$ rotation typical of a spiral.

Star-formation and the AGN

References

Tzioumis A. et al., 1989, AJ 98, 36. 11 [2] Ojha R. et al., 2004, AJ 127, 1977. Heckman T.M. et al., 1986, ApJ 311, 526. 3 Inskip K.J. et al., 2010, MNRAS 407, 1739. 4

- Ramos Almeida C. et al., 2011, MNRAS 410, 1550. $\left[5 \right]$
- Kawakatu N., Nagao T. and Woo J.-H., 2009, ApJ 6 693, 1686.
- Cid Fernandes R. et al., 2013, A&A 557, 86. |7| [8] Labiano A., et al., 2008, A&A 477, 491.

The H α /[NII] spectral region in 1 arcsec² areas showing how the line profiles and ratios vary over the two galaxies, outlined by the green contours (of H α brightness).

The current position of the companion galaxy appears almost aligned with the radio axis (E-W). The fast rotation (for an elliptical) of the primary galaxy, on $\phi = -45^{\circ}$ is instead aligned with a central region of UV emission which was seen in HST data by [8]. For this galaxy we see a stronger signal of rotation in $H\alpha$ compared to other lines, which may be evidence this is a fast-rotating star-forming region surrounding the AGN. It appears this system is at an early stage – the first close passage (perigalacticon) of the two galaxies, which ~ 10–20 Myr ago began triggering star-formation, extensively in the disk galaxy and perhaps in the centre of the primary, quickly followed by the radio outburst.