First IR-based implications for the dust attenuation

and star formation of typical LAEs

If you have interest, please check Kusakabe+15, ApJL, 800, L29

ABSTRACT

Haruka Kusakabe (Univ.Tokyo), K. Shimasaku (Tokyo), K. Nakajima (Geneve), M. Ouchi (Tokyo)

IR data are essential for deriving reliable dust attenuation and stellar pop parameters. By stacking Spitzer/MIPS & Herschel/PACS data for typical LAEs, high-z low M_{*} galaxies, we obtain $L_{TIR} < 1.1 \times 10^{10} L_{\odot}$. We find that they favor SMC attenuation curve than Calzetti curve (Sec. 2). The two curves give very different SED fitting results (Sec. 3). Their Ly α & UV escape fractions are similar to those of average galaxies at z>4 (Sec. 4). Our LAEs lie on the star formation main sequence (Sec. 5). Typical LAEs are excluded from the candidate counterparts of faint SMGs (>0.1mJy) by ALMA (Sec.6).

< Sample selection >

- Narrow band NB387 by Subaru/Suprime-Cam combined with public U and B in GOODS-South (Nakajima+12, 13)
- 213 objects in PEP region
- $M_{UV} = -18.7 \pm 0.6$ mag

< Stacking >

- Spitzer/MIPS 24µm; M24 (GOODS) Herschel /PACS 70,100,160µm; P70, P100, P160 (PEP)
- U to IRAC Ch4 (various surveys)

- $3\sigma L_{TIR}$ upper limit :
 - $L_{TIR} < 1.1 \times 10^{10} L_{\odot}$ from MIPS \rightarrow adopted $L_{TIR} < 1.4 \times 10^{11} L_{\odot}$ from PACS
- SFR_{IR} < $1.8 M_{\odot}/yr$ $1.5 \text{ M}_{\odot}/\text{yr} < \text{SFR}_{\text{tot}} < 3.3 \text{ M}_{\odot}/\text{yr}$
- IRX=2.2, s.t. A1600 < 0.9mag
- < IR SED template >
- Post-Herschel IR SEDs for local galaxies
- (Ciesla+14) Low metallicity template is adopted (most conservative)
- See Kusakabe+15 for the discussion on the L_{TIR} derived from MIPS and PACS.

 Typical LAEs favor SMC attenuation curve and Takeuchi+12 relation than Meurer+99's.

3. SED fitting

SED model including <u>nebular emission</u> (Ono+10)

Attenuation curve	X _r ²	M∗ [10 ⁸ M _☉]	A_1600 [mag]	Age [Myr]	f _{esc} ion	SFR _{UVcorr} [M _☉ /yr]
Calzetti	1.02	3.7+0.1	3.0+0.0	8.7+0.8	90+0 %	25+1

•
$$F_{esc}(UV) \ge 44\%$$
, $F_{esc}(Ly\alpha) = 16-37\%$

UV continuum escape fraction Ly α escape fraction

• The two curves give very different SED fitting results.

• The results from the Calzetti curve are inconsistent with the results of other observations.

Burgarella+13

Similar to those of z >4 average galaxies

• Some bright LAEs may also not be bursty, if they have SMC like curves.

Future work : Dust attenuation and star formation mode of individual bright LAEs by ALMA