Dynamical and structural analysis of a large-scale structure at z=0.65 in CANDELS UDS

Environmental dependence of early-type galaxy properties at z=0.6-0.7

Audrey Galametz Max-Planck-Institut fur extraterrestrische Physik (DE)

In collaboration with the CANDELS clustering group And the UKIDSS team

Motivation

- Large-Scale structures at z > 0.5
 - The largest density enhancements
 - Scales of 100-200 h⁻¹ Mpc
 - Powerful tool to constrain cosmological models
 - Offer a wide range of spatial and dynamical sub-environments
 - Few known at intermediate to high-z

RCS2319+00 – z = 0.9 – 30 Mpc 3 X-ray extended selected clusters

CL0016 - z=0.55 – +30Mpc - >10 members One structure at M>10¹⁴ M $_{\odot}$

Lynx supercluster – z = 1.27 At least 7 satellite groups around the twins

Galaxy Clusters in CANDELS-UDS

Back at the Edge of the Universe, Sintra, Portugal, March 2015

A large-scale structure at z~0.65

Spectroscopic follow-up - VLT/VIMOS

6 masks; ~700 z_{phot} ~0.65 targets 625 new spectroscopic redshifts ...

... combined with existing spectroscopy

Back at the Edge of the Universe, Sintra, Portugal, March 2015

Galaxy Clumps at z ~ 0.65

12 confirmed structures at z = 0.65 – 4 additional strong candidates 2 background (LSS at z = 0.69?) 3 foreground clusters – 2 in the CANDELS FoV

Dynamical analysis – Virial radius & mass

Id.	R_{200}	M_{200}	M_{200}	
	$h_{70}^{-1} { m Mpc}$	$10^{14} { m ~M}_{\odot}$	$10^{14} { m ~M}_{\odot}$	10 ¹⁴ Mo
		Calberg et al. 1997	Evrard et al. 2008	Finoguenov 2010
C1	1.13 ± 0.11	3.39 ± 1.07	2.24 ± 0.70 (m)	1.47
C2	0.86 ± 0.19	1.48 ± 1.08	0.987 ± 0.71 (m)	<1.9σ
$\mathbf{C3}$	0.60 ± 0.10	0.48 ± 0.27	0.33 ± 0.18	0.31
C5	0.97 ± 0.15	2.10 ± 1.05	1.39 ± 0.6864 🦛	
U1N	0.82 ± 0.23	1.36 ± 1.29	0.902 ± 0.846	
U9	0.68 ± 0.19	0.723 ± 0.670	0.483 ± 0.443	0.81
U 2	1.02 ± 0.26	2.45 ± 2.05	1.62 ± 1.35 📁	1.07

XMM 100ks

Back at the Edge of the Universe, Sintra, Portugal, March 2015

ETG Mass-size relation – field vs. cluster Field Cluster

No size difference with environment

Vs.

Vs.

Faster size growth in dense environment vs. field e.g., Lani et al. 2013 here at 0.5<z<1

See also Lani et al. 2013 And Papovich et al. 2010 For z>1 studies

Mass-size relation for cluster ETG at z~0.65

At $M_* > 10^{10.5} M_{\odot}$: ETG sizes in C1/C2 are 0.07dex larger than field ETG at z=0.65

At $M_* < 10^{10.5} M_{\odot}$: ETG sizes in C1/C2 are on average larger than field ETG but with a much broader range of Re

Accelerated size growth in clusters vs. field Dependence with stellar mass

The "E/SF" have a broader range of size: both consistent with "SF" and ETG field at z=0.65

Spectral diagnostics - Preliminary

• Stellar velocity dispersion ~115 sources

Measurements of D4000, Hδ abs., EW[OII] Etc... On-going ...

Back at the Edge of the Universe, Sintra, Portugal, March 2015

Conclusions & Perspectives

- CANDELS/UKIDSS-UDS hosts a large-scale structure at z=0.65
 - 12 members confirmed including at least 4 "clusters" ($M_{200} > 10^{14} M_{\odot}$)
 - A unique playground to study of dependence of properties with density
 - Impact on high-z studies e.g., on the luminosity function at high-z. Magnification bias from group-/cluster-scale lensing?
 - First analysis (structural measurements, velocity dispersion estimates) of ETG in the two main clusters (C1, C2) vs. field.
- Improvements on statistics:
 - Collect 1D spectra for galaxies with zspec from past spectroscopy and (re)derivation of spectral measurements
 - Extend the analysis beyond the CANDELS FoV need M_{*}/Re from UKIDSS
- Perspectives:
 - Map the star-formation distribution in the LSS (from e.g., MIPS, SED)
 - Hunt for K+A galaxies
 - Derive the LSS AGN distribution/fraction (Chandra data coming 1.25 Msec PI: Hasinger/Kocevski)

Back at the Edge of the Universe, Sintra, Portugal, March 2015