Finding galaxy clusters in formation at redshifts > 3

Paola Andreani (ESO) Edwin Retana-Montenegro (Leiden University) et al.

Deep 15, Sintra 16-19 March

Paola Andreani

Talk outline

- Search for high-z clusters
 - Why submm searches for clusters in formation
 - The after Herschel era
 - Role of the gravitational lenses
- Follow-up of lenses' fields
 - Identification of overdensity sources
 - Candidate protoclusters at z~3

Galaxy clusters at high-z: why?

- Constraints on models of large scale structure
- Derive a detailed statistics of massive high density peaks:
 - Constrain the generation mechanism of cosmological perturbations in the early Universe (expected to be associated with massive haloes of dark matter)
 - Constrains its parameters (i.e. Ω_m , σ_8)
 - Sensitive to non-Gaussianity and dark energy
- Used to study the effect of environment on galaxy evolution

Cluster Number Counts and masses N(T,z) $N(M,z) = \int \int \frac{dn(M,z)}{dM} dM dz \frac{dV_c}{dz}$ **T-M relation** N(Y,z) **Y-M** relation $\boldsymbol{\theta}=(\boldsymbol{\Omega}_{\mathsf{M0}},\boldsymbol{\sigma}_{\mathsf{8}})$ Geometry of the Universe Growth of structure $\sigma_{M}(R=8 h^{-1}Mpc,0) \equiv$ $\frac{\rho_{M0}}{\rho_{cr0}} = \frac{8\pi G}{3H_0^2} \rho_{M0}$ Even a single cluster with (M,z) above the curve would rule out ACDM M(z) exclusion curves. and quintessence models 140 Filled circles are Eddington bias-corrected. best fit q=6 120 best fit q=7 Mass [h⁻¹₇₀ M_©] best fit q=8.5 100 CL J1226+3332 MMF3 q=6 10¹⁵ MMF3 q=7 80 MMF3 q=8.5 MM J2235.3-2557 N(z)XLSS J0223-04 60 40 300 sq. deg (joint CL=95% 300 sq. deg (joint CL=80% 100 sq. deg (joint CL=95% 20 100 sq. deg (ioint 1014 0.0 0.5 1.0 1.5 2.0 0 redshift 0.0 0.2 0.8 0.4 0.6 10 zPlanck, 2015^{reani} Mortonson et al., 2011; Jee et al., 2011 Deep 15, Sintra 16-19 March

Protoclusters as FIR sources

- ➤ Cluster of galaxies expected to undergo phases of strong, simultaneous star-formation in the early phases of cluster life (z≥1.5)
- Most massive elliptical galaxies form in the cores of what will become today's most massive galaxy clusters
- Many galaxies in such cores undergo simultaneous starbursts, detectable as dust obscured sub-millimetre galaxies (SMGs), and producing integrated clumps of proto-spheroidal galaxies

How to find protoclusters

- identifying high-z structures very difficult
 - the dusty star-forming phase of a protocluster is short
 - objects will be rare on the sky
- X-ray survey techniques lack sensitivity (XMMU J0044.0-2033 @z=1.58) Santos+11, Santos+13, Santos+15
- optical, near-IR do miss the obscured phase and until recently lack large area on the sky needed to obtain large samples (wait for Euclid)
- Follow-up of Lyα- blobs (Chapman+00, Smail+02, Oteo+13)
- very efficient/successful method using powerful high-z radio galaxies as beacons: # of protoclusters small and possibly biased (i.e. Hatch et al. 2011, 2014).

How to pursue an unbiased search of protoclusters? Herschel surveys

• H-ATLAS:

- Largest Open Time Key Project (600 hours)
- A survey of 550 deg² of the sky
- 5 bands: 110,170,250,350 and 500 microns
- 5σ detection limits (including confusion noise) at 250,350, 500 μm of 33, 37.7, 44 mJy/ beam, respectively
- ~ 1000 SLGs in the full H-ATLAS survey

• HerMES:

- Guaranteed Time Key Project (600 hours)
- A survey of 650 deg² of the sky
- 380 deg² in 5 bands: 110,170,250,350 and 500μm 270 deg² in 3 bands: 250,350,500 μm
- Fields range in size from 0.01 to ~ 20 deg²
- 5 σ limit at 250 μm of 64–91 mJy

Another way of selecting protocluster candidates: bright submm galaxies

What's the role of gravitational lensing ?

dust-obscured star-forming galaxies **lensed** by a foreground **galaxy cluster** lens

GRAVITATIONAL LENS CANDIDATES

SEDs of the lens and of the background source for the five H-ATLAS/SDP gravitational lensing systems.

M. Negrello et al. MNRAS 2014;440:1999-2012

Deep 15, Sintra 16-19 March

Paola Andreani

MONTHLY NOTICES of the Royal Astronomical Society HST/WFC3 images of the first five confirmed gravitational lensing systems discovered by H-ATLAS (blue for F110W and red for F160W).

The lensed galaxy at redshift 3 SDP81

Why submm? how to select protocluster candidates?

- Submm lensed galaxies as signspots
- Fields of lensed galaxy with sources overdensities of dusty galaxies
- Herschel Colours suggest high-z ($z \ge 2-3$)

Paola Andreani

Overdensities in H-ATLAS fields

3 colour maps of the overdensity fields

candidate protoclusters around the lenses H-ATLAS J09+00 at z=3.04 and H-ATLAS J11-01 at z=3.12

Lenses: red circles, Herschel high-z sources: yellow circles

Surface density of sources in one of the targeted fields

Selecting candidates from col-col plots

SDP81: HATLAS J090311.6+003906

G12v2.43: HATLAS J113526.3-014605

Follow-up APEX/LABOCA

SDP81

Follow-up APEX/LABOCA

G12v2.43

Deep 15, Sintra 16-19 March

Deep 15, Sintra 16-19 March

Paola Andreani

Value of the overdensity

$$\delta_{pc} = \rho_{pc} - \rho_{field} = 11$$

$$\rho_{field}$$

$$\rho_{pc} = \frac{Nobj}{\pi r_{com}^2} = 2.4 \ 10^{-4}$$

$$\rho_{\text{field}} = \frac{N_{\text{SDP}}}{A/3 (I_{\text{max}}^3 - I_{\text{min}}^3)} = 2 \ 10^{-5}$$

An overdensity of 11 means that the proto-cluster is likely not gravitationally bound but it is making its turnaround

Deep 15, Sintra 16-19 March

Paola Andreani

see also Diener et al 2014

Evolution of this overdensity

1 + b δ_m = I C I (1+ δ_{pc})

• b= bias (values from Herschel sources between 2.5-3.3)

Amblard et al. 2011, Berthemin et al. 2015

- δ_m = true mass overdensity
- $C = V_{app}/V_{true} = 1 + f f(1 + \delta)^{1/3} \sim 0.53$
- $V_{app} =$ comoving volume in which measurements have been made
- $\delta_{\rm m}^{\rm app} = 2.55$
- The linear overdensity δ_0 corresponding to δ_m =2.55:

 $δ_0 \sim -1.35 (1+\delta)^{-2/3} + 0.78785(1+\delta)^{-0.5866} - 1.12431 (1+\delta)^{-1/2} + 1.68647 \sim 0.88$

(true for spherical collapse, from Mo and White 1996)

This overdensity would evolve from $z \approx 3$ to $z \approx 0$ $\delta(z=0) = \delta_0 (1+z) \approx 3.5 \gg \delta_c = 1.69$ (collapse threshold)

The mass of the dark halo could be estimated from its bias and z $\sigma(M,z) = \delta_c / \sqrt{\{(b-1) \ \delta_c + 1\}} \rightarrow 10^{12} M_{\odot}$

Summary

- >1000 lenses in Herschel surveys
- Colour selection of candidate z>3 Herschel lenses' fields with overdensity of sources (roughly 10%)
- Follow-ups: preliminary results confirm the overdensity of sources at the same z as the lens
- These overdensities may evolve into today clusters, DM halo host $^{\sim}\,10^{12}\,\,M_{\odot}$
- multi- λ follow-ups needed
- More statistics + Estimate of the mass!

Paola Andreani