(Back at the Edge of the Universe @ Sintra, Portugal, 2015/3/19)

Proto-clusters at high-z (z>1.5): structures and stellar populations

Taddy Kodama (NAOJ)

Masao Hayashi (NAOJ), Yusei Koyama (JAXA), Ken-ichi Tadaki (MPE), Ichi Tanaka (Subaru), Rhythm Shimakawa, Tomoko Suzuki, Moegi Yamamoto (NAOJ/Sokendai), et al.

A galaxy cluster RXJ0152 at z=0.83 (Subaru/Suprime-Cam)

What is the origin of the cosmic habitat segregation?

Emergence of the Hubble sequence between z=3 and 1

z~1 (8 Gyrs ago)

z~2-3 (10-11 Gyrs ago)

Hubble Space Telescope

Dickinson (2000),many!

"COSMIC HIGH NOON"

The peak epoch of galaxy/SMBH formation/dust extinction: 1<z<3 (6>T_{cos}(Gyr)>2)

Ha and [OIII] are better tracers of SF activities than the UV-light at this epoch, because they are less affected by dust extinction.

Outline

- How can we find proto-clusters (z>1.5)?
- Structures and growth of proto-clusters
- Environmental dependence of galaxy properties in proto-clusters

primarily based on our results

How can we find proto-clusters (z>1.5)?

LAEs, LBGs, colour-selections, X-ray, S-Z, etc...

See Jun Toshikawa's talk.

Searching for proto-clusters around HzRGs

(may introduce unknown bias...)

Spitzer/IRAC colour-selected galaxies with [3.6] - [4.5] > -0.1 (AB)

Lyα emitters: e.g. Venemans+ 07 Hα emitters: e.g. Matsuda+ 11, Mahalo...

Colour-selections: e.g. Best+ 03, Kajisawa+ 06, Kodama+ 07, Hatch+ 11,...

"MAHALO-Subaru"

MApping HAlpha and Lines of Oxygen with Subaru

Unique sample of NB-selected SF galaxies across environments and cosmic times

Targeted observations of rich clusters are necessary to cover the whole range of environments.

	environ-	target	z	line	λ	camera	NB-filter	conti-	status
	ment				(μm)			nuum	(as of Oct 2014)
-	Low-z	CL0024+1652	0.395	$H\alpha$	0.916	Suprime-Cam	NB912	z'	Kodama+'04
z<1	clusters	CL0939+4713	0.407	$H\alpha$	0.923	Suprime-Cam	NB921	z'	Koyama+'11
clusters		CL0016+1609	0.541	$H\alpha$	1.011	Suprime-Cam	NB1006	z'	not yet
		RXJ1716.4+6708	0.813	$H\alpha$	1.190	MOIRCS	NB1190	J	Koyama+'10
				[OII]	0.676	Suprime-Cam	NA671	R	observed
7~15	High-z	XCSJ2215–1738	1.457	[OII]	0.916	Suprime-Cam	NB912, NB921	z'	Hayashi+'10, '12
Ζ~1.5	clusters	4C65.22 RG	1.516	$H\alpha$	1.651	MOIRCS	NB1657	H	Koyama+'14
clusters	6	CL0332–2742	1.61	[OII]	0.973	Suprime-Cam	NB973	y	observed
		ClGJ0218.3-0510	1.62	[OII]	0.977	Suprime-Cam	NB973	y	Tadaki+'12
	Proto-	PKS1138–262 RG	2.156	$H\alpha$	2.071	MOIRCS	NB2071	K_s	Koyama+'12
	clusters	HS1700+64	2.30	$H\alpha$	2.156	MOIRCS	BrG	K_{s}	observed
z>2		DO		[OIII]	1.652	MOIRCS	[Fe II]	H	not yet
		4C23.56 RG	2.483	$H\alpha$	2.286	MOIRCS	CO	K_{s}	Tanaka+'11
cluster	S	USS1558–003 RG	2.527	$H\alpha$	2.315	MOIRCS	NB2315	K_{s}	Hayashi+'12
		MRC0316–257 RG	3.130	[OII]	2.539	MOIRCS	NB1550	H	not yet
				[OIII]	2.068	MOIRCS	NB2071	K_{s}	observed
	General	GOODS-N	2.19	$H\alpha$	2.094	MOIRCS	NB2095	K_{s}	Tadaki+'11
_ 0		(70 arcmin^2)		[OII]	1.189	MOIRCS	NB1190	J	observed
Z>2		SXDF-CANDELS	2.19	$H\alpha$	2.094	MOIRCS	NB2095	K	Tadaki+'13
field		(92 arcmin^2)	2.53	$H\alpha$	2.315	MOIRCS	NB2315	K_{s}	Tadaki+'13
noru			3.17	[OIII]	2.093	MOIRCS	NB2095	$K_{\rm s}$	Suzuki+'14
			3.63	[O111]	2.317	MOIRCS	NB2315	K_{s}	Suzuki+'14

20 nights for imaging, >15 nights for spectroscopy

Kodama et al. (2013)

Structures and growth of proto-clusters

LSSs (~20Mpc) around two x-ray clusters at z~1.5 traced with [OII] emitters by MAHALO-Subaru

The most prominent star-bursting proto-cluster at z~2.5

USS1558-003 (z=2.53)

Ha imaging with MOIRCS/NB2315 FoV=4' x 7'

68 Ha emitters detected. ~40 are spec. confirmed.

~20x denser than the general field. Mean separation between galaxies is ~150kpc in 3D.

Hayashi et al. (2012)

2D/3D Views of Proto-Clusters at z>2

Spectroscopic confirmation of 40-50 members in each cluster with Subaru/MOIRCS Shimakawa et al. (2014)

Spatial distribution of star-forming galaxies in clusters at z<1.5

 \Box H α emitters at z=0.81 (RXJ1716) \Box [OII] emitters at z=1.46 (XCS2215)

Clusters Grow Inside-Out!

Spatial distributions of HAEs in two proto-clusters at z>2

Lots of HAEs live in proto-cluster cores, indicating strong SF activities there.

Red HAEs (dusty starbursts) tend to favor even denser cores/clumps!

Massive + dusty galaxies in the proto-cluster core

Red Ha emitters are very massive (M★ >10¹¹M_☉) and dusty star-forming galaxies. Many are actually detected at 24µm with MIPS. → Cluster specific/preferred phenomena at high-z, holding a key to understanding the environmental effects. Red/green HAEs are seen in the outskirts/clumps at z=0.4

red/green HAEs
 blue HAEs
 SFR>0.75M_o/yr

Red/green HAEs always reside in the most active environment at any epoch!

"Octopus" cluster (CL0939@z=0.41)

Koyama et al. (2011)

Evolution of integrated SFRs and growth of dynamical mass in cluster cores

Environmental dependence of galaxy properties in proto-clusters

Environmental effects at high-z

(Physical Processes)

Merger, Interaction

Frequency, Mode of SF (starburst)

• Gas inflow

Filamentary cold streams vs. spherical accretion

Gas outflow, stripping

IGM pressure confinement, R-P/Tidal Stripping

(Consequences)

Star formation activity

Scatter of the SF main sequence (boost/truncation)

• AGN activity

Frequency, Co-activation with star formation

Internal structure

Location/Compactness/Dustiness of SF, Clumpiness

Hypothetical galaxy evolution on the SFR vs. M* diagram

Stellar Mass (M*)

Environmental (In-)dependence of the Star-Forming Main-Sequence at z>2?

SF galaxies in the proto-cluster at z~2 follow the same "main sequence" as the field one.

However, the galaxy distributions on the sequence are different in the sense that the proto-cluster contains more massive, higher-SFR, and probably dustier galaxies.

Also, a caveat is that the M* -scaled dust correction may not be applied for cluster galaxies.

Koyama et al. (2013a)

see also Hatch et al. (2011) and Cooke et al. (2014)

Environmental dependence of AGN fraction at $z\sim 2$

Controversial issue!

(X-ray AGNs with Chandra)

Higher AGN fraction in proto-clusters. Lehmer et al. (2014)

But see also Philip Best's talk (Sobater+ '15) which shows NO env. dependence!

Ionization/Excitation States

High-z > Low-z

Both higher sSFR and lower metallicity are contributing to much higher ionization states of high-z SF galaxies. (Kewley et al. 2013)

Cluster ~ Field

No environmental dependence? (low statistics!)

Shimakawa et al. (2015a)

Environmental dependence of gaseous metallicity at z>2

High-z < Low-z

Cluster > Field at low-mid mass

- Sample selections? HAEs in clusters tend to be more evolved than LBGs in the field.
- ② Accelerated, hence more advanced chemical evolution in clusters, and smaller f(gas)?
- ③ Stripping of metal poor gas from the reservoir, and stopping dilution of metals.
- ④ Recycling of enriched and once ejected gas? (Dave+ '11; Kulas+ '13)

Inflow and outflow processes may well depend on environment !

General field

Stochastic, rapid, cold gas accretion through filaments Ejecting enriched gas selectively

Metal dilution by primordial gas inflow

(Proto)cluster

Recycling of metal
enriched gasStripping of metal poor
gas from the reservoirSteady but slow(?)
gas accretion from
a common haloSteady but slow(?)
Stripping
outer metal-poor gas(Dave+ '11; Kulas+ '13)© Rythm Shimakawa

Environment and Mass Dependences of Gaseous Metallicity

Environmental dependence of gas in-/out-flow processes is expected and should be explored!

 \rightarrow another key aspect of the environmental effects on top of merger?

Inflow (cold streams):

- can be different between common haloes in clusters and isolated haloes in the field?

- may affect internal structures (clumpiness)?
 Outflow:
- suppressed by IGM pressure?
- selective stripping of outer metal poor gas?
- → Gaseous metallicity (MOSFIRE spectroscopy), Gas fraction and effective chemical yield (ALMA), and Galaxy anatomy (AO+NB imaging, IFU) will tell us more.

"GANBA-Subaru"

(our on-going project, but really struggling with terrible weather ☺)

Galaxy Anatomy with Narrow-Band AO imaging with Subaru AO-assisted narrow-band Hα, [OIII] imaging with IRCS/Subaru

Any environmental dependence in internal structures?

Resolved star-forming clumps!

Suzuki et al., in prep.

Summary

- Filamentary/clumpy structures of proto-clusters, a mid of their assembly process.
- Clusters grow inside-out, and the SF activity in cluster cores drops rapidly as (1+z)⁶.
- Dusty starbursts are more prevalent in proto-clusters and they hold a key to understanding environmental effects.
- AGN fraction may be higher in clusters/groups at high-z?
- Gaseous metallicity is higher in proto-clusters at z>2 than in the field (controversial yet!).
- Environmental dependence of gas inflow/outflow may be another key factor (as well as galaxy mergers).

