New insights on the evolution of EW(Ha) and sSFR up to z~5

Esther Mármol-Queraltó with Ross McLure Fergus Cullen

Institute for Astronomy University of Edinburgh

Back at the Edge of the Universe, Sintra March 2015

Motivation: about sSFR

Gonzalez+2014

Numerical simulations and semi-analytic models predict that the sSFR should closely match the inflow rate of baryonic material: $\propto (1+z)^{2.25}$

(e.g Dekel+2009)

Expected increase of 10x in sSFR in galaxies of fixed stellar mass over 2<z<7

Motivation: about sSFR

Gonzalez+2014

Stark+2013

Dave+2011 models including feedback: better constrains at high z but fail at lower z

See also Lehnert+2015

Motivation: about sSFR

 $\log_{10}(1+z)$ 0.0 0.2 0.4 0.6 0.8 1.5F 1.2 ystematic 0.9 $\log_{10}(\rm sSFR/Gyr^{-1})$ 0.6 $sSFR = 2 Gyr^{-1}$ 0.3 $sSFR \propto (1+z)^{1.0\pm0.1}$ 0.0 -0.3-0.6-0.9Age -1.22 7 0 3 5 6 8 Redshift

Gonzalez+2014

sSFR=SFR/M M_{stellar}, SFR: SED fitting?

SFR Stellar population models IMF Dust attenuation

Nebular emission

Motivation: about EW(Ha)

Smit+2014

Motivation: about EW(Ha)

 $EW = F(H\alpha)/f_{cont}$

F(Hα) ~ SFR fcont ~ Mstellar

EW(Hα) a reasonably proxy for the sSFR Observed increase of 5x

>>Compatible with the evolution at z<2 >>Incompatible with sSFR

A clear flux excess is detected in the photometric bands where the nebular emission lines are expected: flux in the continuum from the SED

Aim of this work

Can we infer EWs?

Photometric data: CANDELS GOODS-S: Guo+2013 UDS: Galametz+2013

LePhare (Ilbert+2009) Bruzual & Charlot 2003 Chabrier IMF Exponential declining au SFH Solar/subsolar metallicity Calzetti/SMC attenuation Spectroscopic redshifts <<<

>>> Deep HAWKI-Ks data from the HUGS survey (Fontana+2014)

Redshift	Band
Z~1.3	Н
Z~2.2	K
Z~4.5	IRAC-CH1

Testing with SF galaxies at z~1.3

Low-resolution nIR spectra with the WFC3 G141 grism on the HST

Testing with SF galaxies at z~1.3

Low-resolution nIR spectra with the WFC3 G141 grism on the HST

$EW(H\alpha)$ vs redshift

$EW(H\alpha)$ vs redshift

Shim+2011 ~0.2dex brighter IRAC [3.6]

sSFR vs redshift

Evolution with redshift

Summary

We have combined spectroscopic and photometric data in a sample of galaxies at redshifts z~1.3 to recover: Fluxes of the continuum and the emission lines SFRs EW(Ha)

The evolution of the EW(H α) and sSFR with z is similar and $\infty (1+z)^{2.2}$ for galaxies at z<3 $\infty (1+z)^{-1.0}$ for galaxies at z>3

Star-forming galaxies

