Back at the Edge of the Universe @ Sintra 2015.03.19

Galaxy formation activity just before its peak epoch explored with [OIII] emitters at z>3

Speaker: Tomoko Suzuki (SOKENDAI/NAOJ)

T. Kodama, K.-i. Tadaki, M. Hayashi, Y. Koyama, I. Tanaka, Y. Minowa, R. Shimakawa, and M. Yamamoto

Introduction

$\ensuremath{\bigcirc}$ Investigate galaxy formation at z > 3

- Before the peak epoch of galaxy formation at z~2
- How galaxy formation is activated towards its peak ??
- Ha emission is not available beyond $z\sim 2.5$ from the ground ...

Introduction

\bigcirc [OIII] emission line is an excellent tracer of star-forming galaxies at z > 3

 Strong [OIII] emission from high-z star-forming galaxies due to higher specific SFR and/or lower metallicities (higher stellar temperature)

 $\boldsymbol{\cdot}$ less sensitive to dust extinction than the UV light

* See Khostovan et al. 2015 for the most recent studies

MAHALO-Subaru

◎ MApping HAlpha and Lines of Oxygen with Subaru (PI: T. Kodama)

- Narrow-band (NB) survey with Subaru / Suprime-Cam and MOIRCS
- Unique sample of emission line galaxies at various environments and cosmic times

	environ- ment	target	z	line	λ (µm)	camera	NB-filter	conti- nuum	status (as of Oct 2014)
1	Low-z	CL0024+1652	0.395	$H\alpha$	0.916	Suprime-Cam	NB912	<i>z</i> ′	Kodama+'04
	clusters	CL0939+4713	0.407	$H\alpha$	0.923	Suprime-Cam	NB921	z'	Koyama+'11
		CL0016+1609	0.541	$H\alpha$	1.011	Suprime-Cam	NB1006	z'	not yet
z < 1 clusters		RXJ1716.4+6708	0.813	$H\alpha$	1.190	MOIRCS	NB1190	J	Koyama+'10
				[OII]	0.676	Suprime-Cam	NA671	R	observed
	High-z	XCSJ2215-1738	1.457	OII	0.916	Suprime-Cam	NB912, NB921	z'	Hayashi+'10, '12
	clusters	4C65.22	1.516	$H\alpha$	1.651	MOIRCS	NB1657	H	Koyama+'14
z ~ 1.5 clusters		CL0332-2742	1.61	[OII]	0.973	Suprime-Cam	NB973	y	observed
$2 \sim 1.5$ clus	slei S	ClGJ0218.3-0510	1.62	[OII]	0.977	Suprime-Cam	NB973	y	Tadaki+'12
	Proto-	PKS1138-262	2.156	Hα	2.071	MOIRCS	NB2071	Ks	Koyama+'12
	clusters	HS1700+64	2.30	$H\alpha$	2.156	MOIRCS	BrG	$K_{\rm s}$	observed
				[OIII]	1.652	MOIRCS	[Fe II]	H	not yet
z > 2 proto-clusters		4C23.56	2.483	$H\alpha$	2.286	MOIRCS	CO	Ks	Tanaka+'11
		USS1558-003	2.527	$H\alpha$	2.315	MOIRCS	NB2315	$K_{\rm s}$	Hayashi+'12
		MRC0316-257	3.130	[OII]	2.539	MOIRCS	NB1550	H	not yet
				[OIII]	2.068	MOIRCS	NB2071	$K_{\rm s}$	observed
	General	GOODS-N	2.19	$H\alpha$	2.094	MOIRCS	NB2095	Ks	Tadaki+'11
z > 2		(70 arcmin^2)		[OII]	1.189	MOIRCS	NB1190	J	observed
		SXDF-CANDELS	2.19	Hα	2.094	MOIRCS	NB2095	K	Tadaki+'13
		(92 arcmin^2)	2.53	$H\alpha$	2.315	MOIRCS	NB2315	$K_{\rm s}$	Tadaki+'13
General fi	elds		3.17	[OIII]	2.093	MOIRCS	NB2095	$K_{\rm s}$	Suzuki+'14
			3.63	[OIII]	2.317	MOIRCS	NB2315	$K_{\rm s}$	Suzuki+'14

MAHALO-Subaru

○ MApping HAlpha and Lines of Oxygen with Subaru (PI: T. Kodama)

- Narrow-band (NB) survey with Subaru / Suprime-Cam and MOIRCS
- Unique sample of emission line galaxies at various environments and cosmic times

	environ- ment	target	z	line	λ (µm)	camera	NB-filter	conti- nuum	status (as of Oct 2014)
	Low-z	CL0024+1652	0.395	$H\alpha$	0.916	Suprime-Cam	NB912	<i>z'</i>	Kodama+'04
	clusters	CL0939+4713	0.407	$H\alpha$	0.923	Suprime-Cam	NB921	z'	Koyama+'11
		CL0016+1609	0.541	$H\alpha$	1.011	Suprime-Cam	NB1006	z'	not yet
z < 1 clusters		RXJ1716.4+6708	0.813	$H\alpha$	1.190	MOIRCS	NB1190	J	Koyama+'10
				[OII]	0.676	Suprime-Cam	NA671	R	observed
0-	High-z	XCSJ2215-1738	1.457	[OII]	0.916	Suprime-Cam	NB912, NB921	z'	Hayashi+'10, '12
	clusters	4C65.22	1.516	$H\alpha$	1.651	MOIRCS	NB1657	H	Koyama+'14
z ~ 1.5 clusters		CL0332-2742	1.61	[OII]	0.973	Suprime-Cam	NB973	y	observed
$Z \simeq 1.5$ clus	01613	ClGJ0218.3-0510	1.62	[OII]	0.977	Suprime-Cam	NB973	y	Tadaki+'12
	Proto-	PKS1138-262	2.156	$H\alpha$	2.071	MOIRCS	NB2071	Ks	Koyama+'12
	clusters	HS1700+64	2.30	$H\alpha$	2.156	MOIRCS	BrG	$K_{\rm s}$	observed
				[OIII]	1.652	MOIRCS	[Fe II]	H	not yet
z > 2 proto-clusters		4C23.56	2.483	$H\alpha$	2.286	MOIRCS	CO	K_{s}	Tanaka+'11
		USS1558-003	2.527	$H\alpha$	2.315	MOIRCS	NB2315	$K_{\rm s}$	Hayashi+'12
		MRC0316-257	3.130	[OII]	2.539	MOIRCS	NB1550	H	not yet
				[OIII]	2.068	MOIRCS	NB2071	$K_{\rm s}$	observed
10	General	GOODS-N	2.19	$H\alpha$	2.094	MOIRCS	NB2095	$K_{\rm s}$	Tadaki+'11
		(70 arcmin^2)		[OII]	1.189	MOIRCS	NB1190	J	observed
z > 2		SXDF-CANDELS	2.19	$H\alpha$	2.094	MOIRCS	NB2095	K	Tadaki+'13
		(92 arcmin^2)	2.53	$H\alpha$	2.315	MOIRCS	NB2315	$K_{\rm s}$	Tadaki+'13
General fie	elds		3.17	[OIII]	2.093	MOIRCS	NB2095	$K_{\rm s}$	Suzuki+'14
			3.63	OIII	2.317	MOIRCS	NB2315	$K_{\rm s}$	Suzuki+'14

SXDF-CANDELS: Hα emitter @z=2.19, 2.53 / [OIII] emitter @z=3.17, 3.62

Emitter survey in SXDF-UDS-CANDELS field

Tadaki et al. 2013
Narrow-band imaging with Subaru/MOIRCS
Survey area : ~ 90 arcmin²

- NB209

Ha @ z=2.2 / [OIII] @ z=3.2

- NB2315

Ha @ z=2.5 / [OIII] @ z=3.6

Multi-wavelength Data

CFHT/MegaCam	U
Subaru/Suprime-Cam	BVRiz
VLT/HAWK-I	YKs
UKIRT/WFCAM	JHK
Spitzer/IRAC	3.6, 4.5, 5.8, 8.0 µm
Spitzer/MIPS	24 µm

+ High resolution images of HST

Selection of [OIII] emitters at z=3.2, 3.6

○ Emitter Selection (NB209)

- NB209 (z=3.17) + NB2315 (z=3.62)
 - → 34 [OIII] emitter candidates
- AGN contribution??
 - No X-ray detected source (XMM-Newton) → No unobscured AGN
 - MIPS (24µm) detected : 3 objects \rightarrow AGN or dusty starburst

NB emitters
[OIII] emitter candidates

Same location of the mass-size relation

© Size vs M★

between the two epochs

Size : half-light radius of the same rest-frame image by HST (H-band for [OIII] emitters and J-band for Ha emitters)

Same location of the SFR-M^{*} relation between the two epochs

[OIII] emitters @ z=3.2, 3.6 and Ha @ z=2.2, 2.5 in SXDF

◎ the "Star-forming main sequence"

Stellar Mass : from SED fitting

SFR:

- From UV luminosity
- Correct for dust extinction based on A_V from SED fitting

$$egin{aligned} {
m SFR} & ({
m M}_{\odot} {
m yr}^{-1}) \ &= rac{L(1600 {
m \AA})}{8 imes 10^{27} \ ({
m erg \ s}^{-1} {
m Hz}^{-1})} \end{aligned}$$

But different Mass / SFR distribution between two samples

Evolution or Selection effect ??

- \bigcirc Two interpretations for different stellar mass (SFR) distribution between [OIII] emitters at z=3.2, 3.6 and Ha emitters at z~2.2, 2.5.
 - Evolution from z=3.2(3.6) to z=2.2(2.5)
 - Selection effects between Ha and [OIII]

NB at K-band : Ha @ z=2.23NB at H-band : [OIII] @ z=2.23

No selection bias between Ha and [OIII] emitters

"Climb-up" on the main sequence

The same sequence between the two epochs

- → Assuming a simple model
 - : Evolution along the constant sequence from z=3.2(3.6) to z=2.2(2.5)

Accelerated galaxy growth on the main sequence

- 50-90% of the stellar mass can be formed during 1Gyr.
 - : Significant mass growth from z=3.2(3.6) to z=2.2(2.5)
- SFR increases as the stellar mass grows.
- → Star formation activities increase from z=3.2(3.6) to z=2.2(2.5)

Summary

In order to investigate galaxy formation at z > 3, we construct the [OIII] emitter sample in the SXDF-UDS-CANDLES field. We obtain 34 [OIII] emitters at z=3.2 and 3.6.

 \bigcirc For a given stellar mass, sizes of the [OIII] emitters at z=3.2 and 3.6 are almost same with the H α emitters at z=2.2, 2.5.

◎ The location of the SFR-M★ relation of the [OIII] emitters is identical to that of the Ha emitters, but they have different mass (SFR) distribution with each other.

O Assuming that the evolution along the constant sequence, galaxies are expected to be increased their stellar masses significantly during just a Gyr.

 \bigcirc In that case, SFRs of galaxies also increase with time.

 \rightarrow Star-forming activities are accelerated towards the peak epoch at z~2

