

The MUSE 3D view of the Hubble Deep Field South

Jarle Brinchmann Leiden University

R. Bacon¹, J. Brinchmann², J. Richard¹, T. Contini^{3,4}, A. Drake¹, M. Franx², S. Tacchella⁵, J. Vernet⁶, L. Wisotzki⁷, J. Blaizot¹, N. Bouché^{3,4}, R. Bouwens², S. Cantalupo⁵, C.M. Carollo⁵, D. Carton², J. Caruana⁷, B. Clément¹, S. Dreizler⁸, E. Emsellem^{1,6}, B. Epinat^{3,4,9}, B. Guiderdoni¹, C. Herenz⁷, T.-O. Husser⁸, S. Kamann⁸, J. Kerutt⁷, W. Kollatschny⁸, D. Krajnovic⁷, S. Lilly⁵, T. Martinsson², L. Michel-Dansac¹, V. Patricio¹, J. Schaye², M. Shirazi⁵, K. Soto⁵, G. Soucail^{3,4}, M. Steinmetz⁷, T. Urrutia⁷, P. Weilbacher⁷, and T. de Zeeuw^{6,2}

A&A, 575, 32 (2015)

The MUSE instrument

Integral field unit - with 24 spectrographs

λ: Optical range 4650-9300Å
 R=λ/dλ: 1500-3500

FOV: 1x1 arcmin² (7x7 arcsec² in NFM) Sampling: 0.2" (0.025") contiguous

Throughput: 35%

The MUSE instrument

Integral field unit - with 24 spectrographs

R=λ/dλ: 1500-3500

FOV: 1x1 arcmin² (7x7 arcsec² in NFM) Sampling: 0.2" (0.025") contiguous

Throughput: 35%

Williams et al (2000) Casertano et al (2000) m_{AB} ~ 29

Before Aug 2014: A total of 18 redshifts from five previous papers

Williams et al (2000) Casertano et al (2000) m_{AB} ~ 29

Before Aug 2014: A total of 18 redshifts from five previous papers

enter MUSE

27 hours of integration time (good quality)54 exposures of 30 min each.

FWHM in white-light image: 0.77" Depth: 10⁻¹⁹ erg/s/cm²/arcsec² FoV: 1'x1'

Deepest existing blind survey: Rauch et al (2008) -8x10⁻²⁰ (cgs) in 92 hours. We are 32 times "more efficient"

189 secure redshifts for now.

Big advantage: No need to pre-select targets

Going deep - do we reach our requirements?

(pixel = 0.2")

Surface brightness limit: $1 \times 10^{-19} \text{erg/s/cm}^2/\text{Å/arcsec}^2$ Formal line flux limit: $3 \times 10^{-19} \text{erg/s/cm}^2$ $[5\sigma, 1 \text{arcsec}]$

In practice ~10⁻¹⁸ cgs at the moment.

Going deep - do we reach our requirements?

Conclusion: we are close to the theoretical optimum but off by a factor of ~1.2 at 27hr.

Main limitations: flat field stability, bias stability(?)

70 Ly-a emitters seen in HST
26 Ly-a w/o HST
65 [O II] emitters
15 C III]1909 emitters
8 Stars
14 Abs. line redshifts

out of 586 targets

43% are in 17 groups 29% in pairs 28% isolated

70 Ly-a emitters seen in HST
26 Ly-a w/o HST
65 [O II] emitters
15 C III]1909 emitters
8 Stars
14 Abs. line redshifts

out of 586 targets

43% are in 17 groups 29% in pairs 28% isolated

Absorption line only galaxies - an example

 $m_{F814W} = 24.8$

Ly-a emitter

Object #430 z = 6.28 m_{F814W} = 28.6

Object #553 z = 5.08 $m_{F814W} > 29.8$

Separation in 3D

Single object in HDF-S catalogue m_{F814W} ~ 25.3

Separation in 3D

Arcsec

-1

-2

-2

Redshift Distribution - completeness

With decent completion down to 26^{th} magnitude but still significant numbers at $m_{F814} \sim 29$.

The ionisation conditions in the z<1.5 galaxies

The galaxies appear to be dominated by star-formation and the line ratios are not particularly extreme.

Moderately more extreme than local galaxies, but not so much when SFR is taken into account (c.f. Shirazi et al 2014)

Ly-a emitters - a brief look

Ly-a emitters - a brief look

Line fluxes

The median log L_{Ly-a} is 41.72. Still room for improvement!

Diffuse emission

Around object #40 @ z=3.01 - 120 kpc x 120 kpc

Diffuse emission

Around object #40 @ z=3.01 - 120 kpc x 120 kpc

An entirely new ball-game

While MUSE is the most efficient spectrograph on the VLT, it is not a general purpose redshift machine. But it is unbeatable when it comes to density of spectra.

An entirely new ball-game

Density of spectra

An entirely new ball-game

Density of spectra

With time

Summary

Four nights of MUSE observations have given us - and you:

- An order of magnitude more redshifts the main difference from before is the **spatial density** of spectra.
- A nearly flat redshift distribution for 3<z<6
- Most galaxies are in groups or pairs
- We have found a large population of Ly-a emitters fainter than the HST detection limit (I814>30)
- At the same time we get spatially resolved kinematics for 20 galaxies at z ~0.5-1.0
- The majority of the galaxies are star-forming and not particularly extreme (relative to SDSS).

Outlook

- The reduced data are available for all to use:
 - http://muse-vlt.eu/science/
 - Data cubes, spectra, redshifts, catalogue
- MUSE GTO observing (250 nights over 5 years). Multiple fields to ~100 hours and many (50?) fields to ~10 hours depth.
- AOF/GALACSI in 2016-2017
 - ~50% better seeing, 0 impact on throughput, minimal impact in overhead
 - A new public deep field at 0.5 arcsec spatial resolution?
- MUSE is a great instrument keep it in mind for your science!

Supplementary data

Resolving galaxies

GIRAFFE (Puech et al 2006)

The anatomy of the MUSE data-cube

The anatomy of the MUSE data-cube

Spectrophotometry

Overall quite satisfactory - but at $m_{F814W} > 27$ it starts to blow up.

Main limitation: Residual sky variation + calibration residuals. Local sky subtraction is essential (for the moment).

HST colour

Not that object!

HST colour

Not that object!

Not that object!

HST colour

HST colour

That matches!

HST colour

Yet another one?

Dec (J2000)

- ✓ HST WFPC2 F812W
- ✓ 18 Known Spectroscopic Redshifts
- ✓ 189 sources identified in MUSE data cube
- ✓ 8 stars
- ✓ 7 nearby galaxies
 - \checkmark Z = [0.12 0.28]
 - \checkmark I₈₁₄ = [21.2 25.9]

- ✓ HST WFPC2 F812W
- ✓ 18 Known Spectroscopic Redshifts
- ✓ 189 sources identified in MUSE data cube
- ✓ 8 stars
- ✓ 7 nearby galaxies

ID#53

Z = 0.23

I₈₁₄ = 24.9

 $M \approx 2 \ 10^7 \ M_{\odot}$

 10^{-20} erg/s/cm²/A

- \checkmark Z = [0.12 0.28]
- ✓ I₈₁₄ = [21.2 25.9]

Dec (J2000)

- ✓ HST WFPC2 F812W
- ✓ 18 Known Spectroscopic Redshifts
- ✓ 189 sources identified in MUSE data cube
- ✓ 8 stars
- ✓ 7 nearby galaxies
- ✓ 61 [OII] 3727 emitters

 \checkmark Z = [0.29 - 1.48]

$$\checkmark \quad \mathsf{I}_{814} = [21.5 - 28.5]$$

-60°33'15.0"

30.0"

- HST WFPC2 F812W \checkmark
- 18 Known Spectroscopic Redshifts \checkmark
- 189 sources identified in MUSE data \checkmark cube
- 8 stars \checkmark
- 7 nearby galaxies \checkmark
- \checkmark

Dec (J2000)

- ✓ HST WFPC2 F812W
- ✓ 18 Known Spectroscopic Redshifts
- ✓ 189 sources identified in MUSE data cube
- ✓ 8 stars
- ✓ 7 nearby galaxies
- ✓ 61 [OII] 3727 emitters
- ✓ 10 absorption lines galaxies
- ✓ 12 CIII] 1909 emitters
 - \checkmark Z = [1.57 2.67]
 - $\checkmark \quad I_{814} = [24.6 27.2]$

- ✓ HST WFPC2 F812W
- ✓ 18 Known Spectroscopi
- ✓ 189 sources identified in cube
- ✓ 8 stars
- ✓ 7 nearby galaxies
- ✓ 61 [OII] 3727 emitters
- ✓ 10 absorption lines gala

✓ 12 CIII] 1909 emitters

- \checkmark Z = [1.57 2.67]
- ✓ I₈₁₄ = [24.6 27.2]

Dec (J2000)

- ✓ HST WFPC2 F812W
- ✓ 18 Known Spectroscopic Redshifts
- ✓ 189 sources identified in MUSE data cube
- ✓ 8 stars
- ✓ 7 nearby galaxies
- ✓ 61 [OII] 3727 emitters
- ✓ 10 absorption lines galaxies
- ✓ 12 CIII] 1909 emitters
- ✓ 2 AGNs
 - ✓ Z = 1.28
 - ✓ I₈₁₄ = 22.6, 23.6

 10^{-20} erg/s/cm²/A

- HST WFPC2 F812W \checkmark
- 18 Known Spectroscopic Redshifts \checkmark
- 189 sources identified in MUSE data \checkmark cube
- 8 stars \checkmark
- 7 nearby galaxies \checkmark
- 61 [OII] 3727 emitters \checkmark
- 10 absorption lines galaxies \checkmark
- 12 CIII] 1909 emitters \checkmark

2 AGNs \checkmark

 $\sqrt{Z} = 1.28$

I₈₁₄ = 22.6, 23.6 \checkmark

- ✓ HST WFPC2 F812W
- ✓ 18 Known Spectroscopic Reds
- ✓ 189 sources identified in MUSE
- ✓ 8 stars
- ✓ 7 nearby galaxies
- ✓ 61 [OII] 3727 emitters
- \checkmark 10 absorption lines galaxies

Dec (J2000)

- ✓ 12 CIII] 1909 emitters
- ✓ 2 AGNs
- ✓ 63 Ly α emitters
 - \checkmark Z = [2.95 6.28]
 - \checkmark $I_{814} = [24.5 29.6]$

- ✓ HST WFPC2 F812W
- ✓ 18 Known Spectroscopic Reds
- ✓ 189 sources identified in MUSE
- ✓ 8 stars
- ✓ 7 nearby galaxies
- ✓ 61 [OII] 3727 emitters
- \checkmark 10 absorption lines galaxies
- ✓ 12 CIII] 1909 emitters
- ✓ 2 AGNs

✓ 63 Ly α emitters

- \checkmark Z = [2.95 6.28]
- $\checkmark \quad I_{814} = [24.5 29.6]$

 $10^{-20} \, {\rm erg \ s^{-1} \, cm^{-2} \, \AA^{-1}}$

Dec (J2000)

✓ HST WFPC2 F812W

Dec (J2000)

✓ HST WFPC2 F812W

✓ 18 Known Spectroscopic Redshifts

Dec (J2000)

✓ HST WFPC2 F812W

- ✓ 18 Known Spectroscopic Redshifts
- ✓ 189 sources identified in MUSE data cube

Dec (J2000)

- ✓ HST WFPC2 F812W
- ✓ 18 Known Spectroscopic Redshifts
- ✓ 189 sources identified in MUSE data cube
- ✓ 8 stars
 - ✓ F814 = [18.6 23.9]
 - ✓ 7 already identified using proper motion (Kilic et al, 2005)

Dec (J2000)

- ✓ HST WFPC2 F812W
- ✓ 18 Known Spectroscopic Redshifts
- ✓ 189 sources identified in MUSE data cube
- ✓ 8 stars
 - ✓ F814 = [18.6 23.9]
 - ✓ 7 already identified using proper motion (Kilic et al, 2005)

- HST WFPC2 F812W \checkmark
- 18 Known Spectroscopic Redshifts \checkmark
- 189 sources identified in MUSE data cube \checkmark
- \checkmark 8 stars
 - F814 = [18.6 23.9] \checkmark
 - 7 already identified using proper motion \checkmark (Kilic et al, 2005)

MMMMMMMmmmmMMMMM

8000

Alexander And Manheled and Ma Manheled and M

7000

Wavelength [Å]

9000

)s

Dec (J2000)

200

100 =

0

5000

6000