"The Progenitors of Today's Ultra-Massive Galaxies Across Cosmic Time" DANILO MARCHESINI (Tufts University)

Adam Muzzin (Kavli-Cambridge), Mauro Stefanon (Leiden Univ.), Cemile Marsan (Tufts), the UltraVISTA and NMBS collaborations

> Marsan, Marchesini, et al., 2015, ApJ, 801, 133 Marchesini, et al., 2014, ApJ, 794, 65

Research generously funded by:

Back at the Edge of the Universe: March 15-19, 2015 - Sintra, Portugal

Properties of today's most massive galaxies

Properties of today's most massive galaxies

Downsizing:

From archeological studies of local galaxies, more massive galaxies must have started forming stars at earlier times with shorter timescales: most stars in local most massive galaxies must have formed at z>2 (in the first 3 Gyr), through short (<1 Gyr) and intense bursts of star formation.

(Thomas et al. 2005, 2010)

Properties of today's most massive galaxies

Downsizing:

From archeological studies of local galaxies, more massive galaxies must have started forming stars at earlier times with shorter timescales: most stars in local most massive galaxies must have formed at z>2 (in the first 3 Gyr), through short (<1 Gyr) and intense bursts of star formation.

(Thomas et al. 2005, 2010)

One would like to directly connect local most massive galaxies to their progenitors in the early universe.

Selection of the Progenitors of Local Ultra-Massive Galaxies (UMGs)

(SMFs from Muzzin, Marchesini, et al. 2013; UltraVISTA DR1)

Mass growth is a factor of ~3.6 from z=3 to z=0 using abundance matching techniques

The UVJ diagram and separation of Quiescent and Star-forming Galaxies

The UVJ diagram and separation of Quiescent and Star-forming Galaxies

(Marchesini et al. 2014)

At z<1, all progenitors are quiescent, and constitute a very homogeneous population. At high-z, the contribution from star-forming galaxies progressively increases, with the progenitors' population dominated by star-forming galaxies at 2<z<3.

(Marchesini et al. 2014)

Aging of the quiescent population clearly detected.

(Marchesini et al. 2014)

Aging of the quiescent population clearly detected.

The star-forming progenitors are very dusty, confirmed by their ubiquitous detection in the MIPS 24 micron data (green).

(Marchesini et al. 2014)

Aging of the quiescent population clearly detected.

The star-forming progenitors are very dusty, confirmed by their ubiquitous detection in the MIPS 24 micron data (green).

(Marchesini et al. 2014)

The star-forming progenitors have never lived on the blue cloud since z=3.

(Marchesini et al. 2014)

The star-forming progenitors have never lived on the blue cloud since z=3.

> Quiescent and starforming progenitors have similar median rest-frame U-V colors at 2.5<z<3.

(Marchesini et al. 2014)

The star-forming progenitors have never lived on the blue cloud since z=3.

The very massive end of the local redsequence is in the process of assembling between z=3 and z=1 Most of the star-forming progenitors quench in the 2.6 Gyr from z=2.75 to z=1.25. By z=1, all starforming progenitors have quenched.

(Marchesini et al. 2014)

The star-forming progenitors have never lived on the blue cloud since z=3.

The very massive end of the local redsequence is in the process of assembling between z=3 and z=1 Most of the star-forming progenitors quench in the 2.6 Gyr from z=2.75 to z=1.25. By z=1, all starforming progenitors have quenched.

First direct proof in the early universe of the results and implications of the archeological studies of local UMGs, i.e., inferred median z_{form}~1.9 from age of local UMGs, and 1.1<z_{form}<4.2 from the spread in age (~20%, i.e., 1.8-2 Gyr). Our results are in remarkably good agreement with these fossil records (Gallazzi et al. 2006).</p>

Alternative evolutionary path for the formation of local UMGs

Alternative evolutionary path for the formation of local UMGs

Early mass assembly and stellar growth in a short and intense dusty burst of star formation - progenitors as red, heavily dust-obscured, starforming galaxies.

After quenching, progenitors redden due to aging.

Additional growth (mass and size) from dry (?) merging.

Alternative evolutionary path for the formation of local UMGs

Early mass assembly and stellar growth in a short and intense dusty burst of star formation - progenitors as red, heavily dust-obscured, starforming galaxies.

After quenching, progenitors redden due to aging.

Additional growth (mass and size) from dry (?) merging.

What about the progenitors at z>3?

Searching for Very Massive Galaxies at z>3 in the NEWFIRM Medium-Band Survey (NMBS)

Stellar Mass-complete Sample of Galaxies at 3<z<4 from the NMBS

(Marchesini et al. 2010; see talk by Lee Spitler using zFOURGE for lower mass galaxies)

- 14 galaxies at 3<z<4 with M_{star}>10^{11.4} M_{sun}=2.5x10¹¹ M_{sun} in COSMOS and AEGIS over an effective area of 0.44 deg²
- ~50% with ages consistent with age of the universe (~1.6-2.1 Gyr)
- ~30% have SFRs (from SED modeling) consistent with no star formation activity; ~30% have large SFRs, a few hundreds M_{sun}/yr
- First robust evidence of existence of very massive galaxies at z>3 and of large diversity in properties among this population.

(PhD Thesis of Tufts student Cemile Marsan)

Spectroscopic confirmation required to break the ambiguity between massive 3<z<4 galaxies and massive, OLD AND DUSTY galaxies at z<3</p>

Ultra-deep K-band coverage of HFF Pls: Brammer & Marchesini

160 hrs of VLT+HAWK-I (P92, P95).

A2744, MACS-0416 observed in P92: reduced mosaics publicly released (FWHM=0.4", depth 26.3 AB 5-sigma); AS1063 and A370 scheduled in P95 14 hrs of KECK+MOSFIRE (2015A) on MACS-0717 and MACS-1149 Currently FWHM=0.4"-0.6", ~0.3-1 mag shallower than A2744/MACS0416... but 2 more Keck nights to be proposed for in 2015B for completion...

Summary

- The evolution of the progenitors of local UMGs has been investigated since z=3 with UltraVISTA, providing a complete and consistent picture of how the most massive galaxies in the local universe have assembled in the last 11.4 Gyr.
- Local UMGs have grown by 0.56 dex, 0.45 dex, and 0.27 dex from z=3, z=2, and z=1, respectively, to z=0, growing by a factor of ~2-3.6 in the last 11.4 Gyr.
- At z<1, the progenitors are all quiescent, while at z>1 the contribution from star-forming galaxies progressively increases.
- At 2<z<3, the progenitors are dominated by massive (~2x10¹¹ M_{Sun}), dusty (A_V~1-2.2 mag), star-forming (SFR~100-400 M_{Sun}/yr) galaxies.
- ✓ At z=2.75, ~15% of the progenitors are quiescent, with properties typical of massive, young, post-starburst galaxies with little dust extinction and strong Balmer breaks and large intrinsic scatter in U-V colors.
- The very massive end of the local red-sequence population had been mostly assembled between z=3 and z=1, in good agreement with the typical formation redshift and scatter in age from fossil records.
- The progenitors of z~0 UMGs have never lived on the blue cloud since z=3, challenging previously proposed pictures for the formation and evolution of local massive spheroids.
- Presented first spectroscopic confirmation of an ultra-massive galaxy at z>3 ($z_{spec}=3.351$) with $M_{star}=3x10^{11}$ M_{Sun} , compact ($r_e=1$ kpc) and n~4.4, hosting a powerful hidden AGN, with $z_{form}\sim4.1$: prototype of the progenitors of local most massive ellipticals.