Galaxy Stellar Mass Assembly at High z

Karina Caputi

Kapteyn Astronomical Institute University of Groningen

> Sintra, Portugal 17 March 2015

Outline

- Stellar mass assembly at z>2: a brief intro
 - Key questions and context
- A (non-exhaustive) review of results with the latest near-/mid-IR galaxy surveys Emerging trends and limitations

• Prospects for JWST & Euclid

Outline

- Stellar mass assembly at z>2: a brief intro
 - Key questions and context
- A (non-exhaustive) review of results with the latest near-/mid-IR galaxy surveys Emerging trends and limitations

• Prospects for JWST & Euclid

The overall picture

The overall picture

When and how have the galaxies that we see today formed?
How efficient was galaxy assembly at different z?

Stellar mass assembly in context

suggests increasing efficiency in galaxy stellar mass assembly

 \checkmark was this a steady process?

 \checkmark when did galaxies become massive for the first time?

✓ can we trace the building blocks of massive galaxies in the early Universe?

The GSMF as cosmological probe of galaxy assembly

The GSMF is a powerful statistical tool to study the evolution of stellar mass assembly

Outline

• Stellar mass assembly at z>2: a brief intro

Key questions and context

 A (non-exhaustive) review of results with the latest near-/mid-IR galaxy surveys Emerging trends and limitations

• Prospects for JWST & Euclid

A wealth of deep near- and mid-IR surveys

IR galaxy surveys are necessary to study stellar masses of high-z galaxies

Ultra-deep: Ks~25.4 (5σ;AB)

Y, J, H & Ks + NB118 (see B. Milvang-Jensen's poster)

The CANDELS survey

CANDELS Public Data GOODS-S Deep

H~27 AB mag - 0.25 sq. deg. H~28 AB mag - GOODS fields

Spitzer surveys

At z>3, mid-IR surveys are necessary to study stellar masses

Spitzer matching data necessary and unique

✓ SCANDELS (PI Fazio) - 50h/pointing

✓ SCOSMOS+SPLASH (PI Sanders/Capak) entire COSMOS field at ~10h/pointing

✓ SMUVS (PI Caputi) - just started! 1800 h on Spitzer three ultra-deep stripes at ~40h/pointing

benefits from homogeneous data in COSMOS

The GSMF up to z~5 - high-mass end

Are we missing massive galaxies to z~5?

UltraVISTA (ultra-deep)

KC et al. (2015, in prep.)

The GSMF up to z~6-7 - intermediate stellar masses

See also Mortlock et al. (2011), Santini et al. (2012), etc.

Emerging trends

* There is a significant evolution in the GSMF from $z\sim6-7$ down to $z\sim2-3$

Mainly number density evolution

* Characteristic slope (α) is significantly higher at z>2-3 than z=0-1

General consensus, although values not as high as initially thought

*The cosmic stellar mass density rises from ~ a few % (z=6) to ~40% (z=2)

Stellar mass assembly was very efficient overall over period elapsed at 2<z<6

Outstanding Problems

* Still significant differences in GSMF results at z>5: cosmic variance + other issues

- \checkmark zphot uncertainties
- \checkmark different methods to derive stellar masses

homogeneous analysis of further surveys necessary to constraint galaxy models

* Strong assumptions (metallicities, IMF) - don't lead to disagreements, but still there

* The importance of TP-AGB stars in the rest near-IR not so important as once thought?

See Maraston et al. (2006), but also Kriek et al. (2008), Zibetti et al. (2013)

The effect of emission lines

Emission lines can affect stellar mass determinations of high-z galaxies However, importance depends strongly on galaxy colour

de Barros' talk on Thursday

The Physics of Galaxy Mass Assembly

We know very little about the physics of stellar mass assembly

- ✓ galaxy mergers? cold accretion?
- ✓ importance of gas outflows? (stellar feedback)
 - needs deep spectroscopy currently difficult at z>2

- ✓ dust-obscured star formation?
 - needs far-IR data

 \checkmark AGN feedback in massive galaxies

models predict AGN in all massive galaxies to quench star formation

Stellar mass - metallicity relation

models cannot reproduce GSMF and other galaxy properties consistently at high z See also e.g. Cousin et al. (2015)

Gas outflows in galaxies up to z~3

Karman et al. (2014)

evidence of galaxy outflows still scarce to constrain galaxy models

Outline

• Stellar mass assembly at z>2: a brief intro

Key questions and context

 A (non-exhaustive) review of results with the latest near-/mid-IR galaxy surveys Emerging trends and limitations

• Prospects for JWST & Euclid

The James Webb Space Telescope

The JWST will be *the* telescope to discover the first galaxies, and the building blocks of massive galaxies at high z

Primary mirror $\phi = 6.5$ m

4 instruments on board: MIRI, NIRCam, NIRSpec, NIRISS

Integrated Science Instrument Module testing to be completed at the end of this year

JWST science -- example I

z=4 -- M~10⁹ Msun

JWST science -- example 2

 $z=7 - M \sim 3 \times 10^{10} M sun$

JWST will discover the bulk of galaxy populations at z>7

MIRI crucial to constrain old stellar populations and stellar masses

ESA/NASA JWST conference

ESTEC, Noordwijk - 12-16 October 2015

Euclid science

- \checkmark ultimate statistics (all sky!)
- \checkmark deep survey: 40 x UltraVISTA
- \checkmark spectroscopic redshifts

A high precision era for stellar mass assembly

Talk this morning by A. Cimatti

Summary

• Good constraints to GSMF up to $z\sim5$, and first constraints at higher z

- Emerging trends:
- mainly density evolution
- increasing slope
- ~40% STMD at 2<z<6

- Limitations:
- zphot/Mst uncertainties
- systematic effects
- galaxy models at near-IR
- The physics of galaxy stellar mass assembly is still very poorly known resolving galaxies with good S/N at z>3 currently challenging >> JWST & ALMA
- JWST and Euclid -- wait for them: it is worth it ! JWST: finding the building blocks of massive galaxies & physics of stellar mass assembly Euclid: the ultimate probe of galaxy stellar mass assembly to z~2-3

Stellar mass - size relation

van der Wel et al. (2014)

constant slopes suggest SF quenching/end mass assembly lead to universal relation

...but what happens at higher z?

Popping et al. (2015)