The first billion years of galaxy formation in cold and warm dark matter cosmologies

Pratika Dayal

The main questions

- What is the fundamental physics driving the evolution of early galaxies?
- How can we use them to constrain the nature of Dark Matter?

The premise: maximum SFE limited by energy required to unbind rest of the gas and quench star formation - up to a

The premise: maximum SFE limited by energy required to unbind rest of the gas and quench star formation - up to a

The premise: maximum SFE limited by energy required to unbind rest of the gas and quench star formation - up to a

A semi-analytic model implemented with this simple idea

PD, Ferrara, Dunlop & Pacucci, 2014

The number counts of early LBGs (the UV LF)

PD, Ferrara, Dunlop & Pacucci, MNRAS, 2014

The gastrophysics of early LBGs

Prediction for the frontier Fields and JWST: $lpha=-1.75\log z-0.52$

Light scales linearly with mass - but slope debated

PD, Ferrara, Dunlop & Pacucci, 2014

Testable prediction: $\log M_* \propto -0.38 M_{UV}$

Extending this framework to Warm Dark Matter Cosmologies

Hierarchical structure formation in CDM

Mass roughly 100 GeV

Lighter the WDM particle, more is the suppression of small scale structures

Lighter the WDM particle, more is the suppression of small scale structures

Lighter the WDM particle, more is the suppression of small scale structures

UV LFs in WDM

Including baryons (and SF) decreases the difference between CDM and 1.5 keV WDM models

PD, Mesinger & Pacucci, 2015

Since the merger tree starts building up later in WDM models..

Since the merger tree starts building up later in WDM models..

it leads to a delayed assembly of the stellar mass

Mass-to-light ratios in different DM models

PD, Mesinger & Pacucci, 2015

Light WDM models show lower M/L ratios (i.e. more luminosity per unit stellar mass) compared to CDM

Observational imprints of light WDM particles: buildup of the cosmic stellar mass density

Redshift evolution of stellar mass density with JWSTdetectable galaxies can allow constraints on WDM mass of about 2keV!

PD, Mesinger & Pacucci, 2015

Conclusions

• The premise: galaxies form stars with a limiting efficiency that can unbind rest of the gas and quench star formation, up to a maximum threshold.

• This simple model reproduces the UV LF over 3.5 orders of magnitude in luminosity at z~5-8 and predicts evolution of the faint end (steepening with redshift), and a mass-to-magnitude relation (slope of -0.38).

• **Gastrophysics depends on halo mass** - self accretion (mergers) build up the gas mass for low mass (high mass) galaxies.

• Implementing the same baryonic physics into CDM and WDM models, we find UV LF, SMD, M/L ratios indistinguishable between CDM and >3 keV WDM. But JWST SMD measurements may help distinguish lower mass (~2 keV) WDM.