Galaxy formation: Predictions from models

Joop Schaye (Yope Shea) Leiden University

Basic resolution requirements

- Convergence requires resolving the Jeans scales: $M_{\rm J} \approx 1 \times 10^7 \, h^{-1} \, {\rm M}_{\odot} f_{\rm g}^{3/2} \left(\frac{n_{\rm H}}{10^{-1} \, {\rm cm}^{-3}} \right)^{-1/2} \left(\frac{T}{10^4 \, {\rm K}} \right)^{3/2}$ $L_{\rm J} \approx 1.5 \, h^{-1} \, {\rm kpc} \, f_{\rm g}^{1/2} \left(\frac{n_{\rm H}}{10^{-1} \, {\rm cm}^{-3}} \right)^{-1/2} \left(\frac{T}{10^4 \, {\rm K}} \right)^{1/2}$
- Resolving the warm phase requires:
 - Particle mass << $10^7 \ M_{\odot}$
 - Spatial resolution << 1 kpc
- Resolving gas with $n_H \sim 10 \text{ cm}^{-3}$ and $T \sim 10^2 \text{ K}$ requires:
 - particle mass << $10^3 M_{\odot}$
 - spatial resolution << 10 pc
 - Radiative transfer
 - Complex chemistry

Self-regulated galaxy formation

- Feedback too weak compared to accretion
 - ➤Gas density increases
 - Star formation /BH growth rate increases
 - Feedback increases
- Feedback too strong compared to accretion
 - ➤Gas density decreases
 - Star formation/BH growth rate decreases
 - ➢ Feedback decreases

Consequences of self-regulated GF

- Galaxies tend to a state of quasiequilibrium (outflow ~ inflow), when averaged over suitable length and time scales
 - > Existence of simple scaling relations
- Outflow reacts to inflow
 - Gas accretion drives galaxy evolution

Consequences of self-regulated GF

- M_{*} inversely proportional to efficiency of SF feedback
 - M*-Mhalo relation cannot be predicted unless the radiative losses in the ISM can be predicted
- M_{BH} inversely proportional to efficiency of AGN feedback
 - Normalisation of M_{BH}-M_{*} relation difficult to predict from first principles
- Feedback efficiencies need to be calibrated, e.g. to reproduce the observed z = 0 mass functions of galaxies and black holes

The EAGLE project: simulating the evolution and assembly of galaxies and their environments

Joop Schaye,^{1*} Robert A. Crain,¹ Richard G. Bower,² Michelle Furlong,² Matthieu Schaller,² Tom Theuns,^{2,3} Claudio Dalla Vecchia,^{4,5} Carlos S. Frenk,² I. G. McCarthy,⁶ John C. Helly,² Adrian Jenkins,² Y. M. Rosas-Guevara,² Simon D. M. White,⁷ Maarten Baes,⁸ C. M. Booth,^{1,9} Peter Camps,⁸ Julio F. Navarro,¹⁰ Yan Qu,² Alireza Rahmati,⁷ Till Sawala,² Peter A. Thomas¹¹ and James Trayford²

EAGLE: Evolution and Assembly of GaLaxies and their Environments

- Planck year 1 cosmology
- Volumes of 25 100 Mpc and zooms
- Up to 2x1504³ (~7 billion) particles
- Particle mass $10^5 10^6 M_{\odot}$ (smaller for zooms), resolves warm ISM
- Pressure-entropy SPH, time step limiter
- Includes feedback from stars and AGN (1 type each)
- Subgrid recipes depend only on local hydro quantities
- Winds develop naturally without
 predetermined mass loading or velocity
- Hydro and cooling never turned off
- Feedback efficiency calibrated to match
 z = 0 mass function and galaxy sizes
- Many different models, spin offs

Images from u,g,r filters + dust

From JS et al. (2015)

Barred discs

Ellipticals

Irregulars

Images from u,g,r filters + dust

From JS et al. (2015)

Movie by James Trayford

Ellipticals

Barred discs

Irregulars

Galaxy mass function

JS et al. (2015)

Many ways to fit the mass function

 $M_{200} = 10^{12} M_{\odot}$

Sizes

Evolution of the stellar density

Evolution of the mass function

Furlong et al. (2015)

Colour-magnitude diagram: EAGLE vs GAMA

SPSS: Bruzual & Charlot '93 Extinction: Charlot & Fall Flux limit: GAMA

Trayford et al. (in prep)

Intergalactic metals

JS et al. (2015)

H₂ Mass function

Lagos, Crain, JS et al. (in prep)

H₂ fraction

Lagos, Crain, JS et al. (in prep)

HI Column density distribution

Rahmati, JS et al. (in prep)

HI LLS covering around bright z~2 quasars

Rahmati, JS et al. (in prep)

Radiation-hydrodynmical simulations of reionisation

If the multiphase ISM is unresolved, then we need to:

- Calibrate subgrid stellar feedback to fit luminosity function (not done here; $f_{th}=1$)
- Calibrate subgrid escape fraction to desired reionisation history (not done here; $f_{esc,subgrid}=1$)

Radiation-hydro simulations of reionisation

Pawlik, JS & Dalla Vecchia (2015)

Effects of supernovae and photoheating

Pawlik, JS & Dalla Vecchia (2015)

Effects of supernovae on reionisation

Pawlik, JS & Dalla Vecchia (2015)

Cosmological Hydro

- Galaxy formation is self-regulated. Cosmological accretion drives the evolution. Feedback is critical.
- Cosmological simulations cannot predict stellar and black hole masses, they need to be calibrated.
- Cosmological radiation-hydro simulations cannot predict the reionization history, they need calibration.
- There are many ways to get the z=0 galaxy mass function, but predictions for other observables vary.
- Many observations of galaxies and the IGM are reproduced once the z=0 mass function and sizes match the data.
- Simple, natural feedback recipes suffice.
- EAGLE rivals semi-analytic models in terms of reproducing galaxy observables.