

Gamma-ray Bursts: the Ancient Keys of Cosmic Exploration

Time-domain Science Definition Team

A. Cucchiara (NASA-GSFC) NPP Fellow

antonino.cucchiara@nasa.gov

M. Rafelski (NASA-GSFC) M. Fumagalli (U. Durham) D. Kocevski (NASA-GSFC) J. X. Prochaska (UCSC) R. Cooke (UCSC) G. Becker (U. Cambridge)

arXiv:1408.3578 (accepted on ApJ)

What is a Long GRB?

- Gamma ray bursts represent the most powerful explosions known in the gamma-ray Universe.
- They are probably produced by the explosion of Massive stars $(>30M_{\odot})$ and they are cosmological objects (z > 20, PopIII stars?)
- Their interaction with the surrounding material carries information about the GRB progenitor and the host galaxy.
- Represent the best tool for investigating the early stages of the Universe history, Star-formation and re-ionization epoch

GRBs as "tracers"

GRB afterglow spectra present signature of material not only in its **vicinity** but also of "**intervening systems**" unrelated to the GRB: these are located somewhere along the GRB line of sight.

Redshift distribution

Jakobbsson et al. 2011

GRB 090423

Redshift determination

We can determine the redshift of a GRB based on absorption spectroscopy or just by rapid multiband imaging (photometric). e.g. NIHTS+LMI on DCT will be ideal!

Eta Carinae Complex

Can GRBs be probes of primordial Star-formation?

Likely GRBs are produced by $30-40 \ M_{\odot}$ (either in isolation or as runaway from a binary system)

They play an important role in shaping the primordial Universe.

To trace Star-formation* (bias?)
To Study the cosmic metal build-up
To investigate re-ionization epoch

*see S. Vergani's poster

Following the Hydrogen way: GRB-Damped Lyman-a Systems (DLA)

We know that most of GRB at z>2.0 exhibit strong HI damping wings in their spectra (DLA).

This reservoir of neutral gas is a key ingredient of star formation. Quasars DLA have been studied for decades in absorption.

Following the Hydrogen way: GRB-Damped Lyman-a Systems (DLA)

We know that most of GRB at z>2.0 exhibit strong HI damping wings in their spectra (DLA).

This reservoir of neutral gas is a key ingredient of star formation. Quasars DLA have been studied for decades in absorption.

HII Region

H₂ cloud

10-100pc

Hale

8000

ISM

6400

IGM

6600

8500

CSM

<10pc

CHEN ET AL. (2005)

6800

9000

GRB

Quasars have complex galaxy features and randomly intersects "blob" of material...detected as intervening systems in higher-z QSO. GRB-DLAs are much simpler, GRBs are bright ... then GRBs fade away.

Following the Hydrogen way

- Stars form from cold gas in ionic and molecular form (HI, H_2)
- Chemical abundances require HI
- Metals are produced and recycle in SF episodes

• Damped Lyman-a systems: $HI \ge 10^{20.3} \text{ cm}^{-2}$

Following the Hydrogen way

DLAs are identified at z>1.5, usually along Quasar lines of sight. In the case of GRBs, they appear at the location of the GRB hosts.

HI is determine by the fitting of the Lyman-alpha line: the broader it is the large is the amount of HI near the GRB and along the l.o.s.

The GRB-DLA sample

- 56 DLAs, 12 sub-DLAs until May 2014 (see also Arabsalmani+14, Sparre+14).
- Derived metal (S, Si, Zn) abundances via Apparent Optical Depth technique (same as the QSO-DLA control sample).
- Since 60% of the GRB sample is obtained with mid/low resolution spectrographs (R<1200) we consider those metallicities lower-limits.
- We perform a survival analysis in order to determine the metallicity trend across the redshift explored.

- GRB/QSO-DLAs have same metallicity in the 1.8<z<3
- At z > 3 GRB-DLAs probe a higher metallicity content $(Z/Z_{\odot} > -1.0)$
- The trend is shallower then QSO-DLAs, indicating that GRB hosts are metal enriched already at z=5, via **SNe** (or **AGBs pollution**)

Sintra - March

- GRB/QSO-DLAs have same metallicity in the 1.8<z<3
- At z > 3 GRB-DLAs probe a higher metallicity content ($Z/Z_{\odot} > -1.0$)
- The trend is shallower then QSO-DLAs, indicating that GRB hosts are metal enriched already at z=5, via **SNe** (or **AGBs pollution**)

Sintra - March

- GRB/QSO-DLAs have same metallicity in the 1.8<z<3
- At z > 3 GRB-DLAs probe a higher metallicity content $(Z/Z_{\odot} > -1.0)$
- The trend is shallower then QSO-DLAs, indicating that GRB hosts are metal enriched already at z=5, via **SNe** (or **AGBs pollution**)

Sintra - March

Now we look at the hosts

The emission lines to derive SFR AND metallicity are in the capabilities of current NIR spectrographs. (e.g. DCT/RIMAS, Gemini/GNIRS/Flamingos-2, Keck/MOSFIRE).

Stay tuned!

Now we look at the hosts

The emission lines to derive SFR AND metallicity are in the capabilities of current NIR spectrographs. (e.g. DCT/RIMAS, Gemini/GNIRS/Flamingos-2, Keck/MOSFIRE).

• H α and nebular emission lines give direct measure of the recent starformation (10-60 Myr) and provide metallicity estimates...but at high redshift they are shifted in the NIR

Stay tuned!

Now we look at the hosts

The emission lines to derive SFR AND metallicity are in the capabilities of current NIR spectrographs. (e.g. DCT/RIMAS, Gemini/GNIRS/Flamingos-2, Keck/MOSFIRE).

- H α and nebular emission lines give direct measure of the recent starformation (10-60 Myr) and provide metallicity estimates...but at high redshift they are shifted in the NIR
- We select GRB hosts independently from their overall properties (mass, luminosity)
- A subset of GRB-DLAs hosts have been monitored with DCT/LMI
- We obtained some LBT/LUCI2 data.

Stay tuned!

JWST and 30m telescopes

- **TMT/IRIS** could observe z=8-10 GRBs within 2 days of the explosion and obtain high Resolution spectroscopy!!!
- NIRSpec/JWST will be able to obtain R>4000 spectroscopy of GRB afterglow up to <u>1 week post burst</u>
- GRB hosts can then be studied in detailed using **WFIRST/JWST/ TMT** and derive global information of the first galaxies

Conclusions

- GRB are an incredible and unique tool to study the z<20 Universe
- The afterglow spectra provide the ONLY chemical diagnostic of SF regions in galaxies at z>3.
- GRB-DLAs shows a metal enriched environment up to z=6
- GRBs hosts will be keys to study the cosmic SFR independently of Galaxy Mass, Luminosity, or Metallicity
- JWST and TMT facilities will greatly benefit from GRB science and rapid Opt/NIR follow-ups

- Metallicity dependancies help in distinguishing between single and binary channel of Long GRBs progenitors
- The distribution of metallicity is consistent with 2-mode of GRB production assuming a metallicity bias

Comparson with HST

GRBs lead the way to the exploration of the early epoch of the Universe history.

Comparson with HST

GRBs lead the way to the exploration of the early epoch of the Universe history.

HST (10+ years) vs GRBs (7 days)

Comparson with HST

GRBs lead the way to the exploration of the early epoch of the Universe history.

HST (10+ years) vs GRBs (7 days)

What's next?

Perley et al. 2013 use multi band optical-IR obeservations of ``Dark'' GRB hosts (ground +HST -Spitzer) to observe their hosts.

They derive high masses at z>1, but GRBs prefer low mass hosts at z<1, likely due to low-metallicity (metallicity cut-off, Kocevski et al. 2009).

Therefore GRBs are BIASED tracers of SFR.

High/low resolution complexity

GRB050820 - HIRES

~ղ^ՐՈՐմ^ՂԾՂՈ^ւ ՈՒԴՈՈւթը 0. 0.2 0.0 SII1250 SII1250 SII1250 հղին 1.0 SiII1304 SiII1304 ՟՟ֈ֎֍ֈֈֈ 0.0 FeII1608 FeII1608 0.0 0. 0. 0.0 FeII1611 FeII1611 նկով միի 0.2 0.0 ZnII2026 ZnII2026 ZnII2026 -0 -400 -200 0 -400 -200 0 200 400 200 400 -400 -200 0 200 400 Relative Velocity (km s^{-1})

Simulated X-Shooter

Simulated Gemini

GRB 050820 (z=2.61)

$$Z/Z_{\odot} = 0.2$$

GRB 050730 (z=3.967)

 $Z/Z_{\odot} = 0.01$