The Assembly of Massive Black Holes in the Early Universe

Marta Volonteri

Institut d'Astrophysique de Paris

F. Pacucci, A. Ferrara G. Dubus, J. Silk G. Ghisellini, F. Haardt, T. Sbarrato

I. High-z quasars and MBHs

2. Eddington limit?

3. How do the first MBHs grow?

4. High-z jets

High-redshift quasars

As massive as the largest MBHs today, but when the Universe was ~ Gyr old! High luminosity and large estimated MBH masses

Some fainter sources found in X-ray (Fiore+12, Giallongo+15)

For a BH accreting at a fraction f_{Edd} of the Eddington limit, mass grows in time as:

$$M(t) = M_{in} e^{(\frac{1-\eta}{\eta} f_{\text{Edd}} \frac{t}{0.45 \text{Gyr}})}$$

$$ULAS JI 120 @ z=7.1 M=2x 10^9 \text{ Msun} t\sim 0.75 \text{ Gyr} 10^4 \eta\sim 0.1 M_{in} > 300-\text{ish Msun and } f_{\text{Edd}} \sim 0.5-1 z^{-1}$$

I. High-z quasars and MBHs

2. Eddington limit?

3. How do the first MBHs grow?

4. High-z jets

The feeding of high-z MBHs

- Estimate Eddington rate for BHs in Horizon-AGN -- 3x10⁶ Mpc³ (Dubois+14)
- Supercritical inflows possible,
 ~10% at z>6
- What happens when they reach the MBH?

Super-Eddington accretion?

Super-Eddington accretion vs super-Eddington luminosity

Highly super-Eddington accretion does not imply highly super-Eddington luminosities

Low "effective" radiative efficiency: $\varepsilon < \eta \sim 0.1$

Trapping all of it

Trapping of radiation: the time for photons to escape the disk exceeds the timescale for accretion

Trapped photons are advected inward with the gas, rather than diffuse out

Luminosity highly suppressed

$$\frac{L}{L_{Edd}} \sim \ln\left(\frac{\dot{M}}{\dot{M}_{Edd}}\right)$$

Trapping all of it

 $10^{5} M_{sun}$ MBH could grow to ~ $10^{8} M_{sun}$, in ~ 10^{6} years => boost of ~ 3×10^{2} vs Eddington

- gas inflow rate: I-10 Msun/yr (~1% of the free fall rate)
- only gas with low angular momentum $(\lambda \sim 1\% \text{ of the mean})$ is accreted

Only short periods needed to ease constraints (e.g. Volonteri & Rees 2005, Volonteri, Silk & Dubus 2015)

Trapping all of it

In galaxies with much low-angular momentum gas near the center the MBH can get to a higher mass at fixed gas velocity dispersion. I. High-z quasars and MBHs

2. Eddington limit?

3. How do the first MBHs grow?

4. High-z jets

MV 2012, cf. Rees 1978

domain: 10^{-3} pc to 20 pc

- Spherical symmetry
- Radiation-hydrodynamic simulation
- Accretion disc is unresolved
- No magnetic fields
- Cooling: bremsstrahlung and atomic
- Opacity: Free-Free and Bound-Free
- Gas density profile extracted from cosmological simulations of direct collapse BH formation (Latif+2014)
- Standard thin accretion disc
- Slim disc (supercritical accretion)

Pacucci & Ferrara 2015, Pacucci et al. 2015

Standard accretion: L \propto Mdot

Luminosity mildly super-Eddington

Slim disc accretion: L \propto ln(Mdot)

Luminosity sub-Eddington, while accretion supercritical

Pacucci et al. 2015

How do the first black holes shine?

MBH accretes until it has consumed most of the gas

Physical accretion rates are ~0.02-0.15 M_{sun}/yr

```
N<sub>H</sub>~10<sup>23</sup>-10<sup>24</sup> cm<sup>-2</sup>
```

CDF-S already gives constraints on the number density of these accreting BHs! I. High-z quasars and MBHs

2. Eddington limit?

3. How do the first MBHs grow?

4. High-z jets

Radio-loud quasars at z=6: blazars

- Blazars' jets point as us: viewing angle $< 1/\Gamma$ (Γ =Lorentz factor)
- For each detected blazar there are $2\Gamma^2=450(\Gamma/15)^2$ misaligned sources with same intrinsic properties, but not detectable as such
- Hard X-ray selection optimal for detecting high-z blazars because of SED => Swift BAT
- Include also gamma-ray detections => Fermi/LAT survey => Y_rays

Swift/BAT selected L>1047 erg/s

Ajello et al. 2009

Where is the peak of quasar and blazar activity?

Select heavy and actively accreting MBHs in BAT & LAT: (i) $M > 10^9 M_{\odot}$ (ii) $(L_d/L_{Edd}) > 0.1 => f_{Edd} > 0.1$

$$=> L_d > 0.1 L_{edd} = 10^{46} \text{ erg/s} (M/10^9 M_{\odot})$$

Assuming an SED => detectability in different bands

High-z blazars

Heavy and active MBHs: (i) M > $10^{9}M_{\odot}$ (ii) (L_d/L_{Edd}) > 0.1

Pentagons: lower limits from detected sources

Peak of jetted population at z higher than radio-quiet

Ghisellini et al. 2013, Sbarrato et al. 2012, 2013, 2015

Do jets help a BHs grow faster?

η: accretion efficiency – $0.05 \le \epsilon \le 0.32$

- A fraction $(I-\eta)$ goes into the BH
- A fraction $\eta_d \leq \eta$ is radiated away: $L = \eta_d \dot{M} c^2$
- A fraction of η may amplify the magnetic field: $\eta = \eta_d + \eta_{jet}$

$$t_{acc} = 0.45 \frac{\eta_d}{1-\eta} \ln(\frac{M_{fin}}{M_{in}}) \text{Gyr}$$

Growth time decreases by a factor $\eta_d/\eta!$

- I. High-z quasars and MBHs
 - need to find lower luminosity/mass MBHs
 - possible contribution to reionization (10-20%)
- 2. Eddington limit?
 - Eddington luminosity is not Eddington rate
- 3. How do the first MBHs grow?
 - Supercritical rates possible
 - Absorption/obscuration may be an issue
- 4. High-z jets
 - complementary way to search
 - do jets help MBHs grow fastter?