Sintra, March 16th 2015

Lyman Continuum Signal from z~3 star-forming galaxies and higher redshift implications.

Lucía Guaíta INAF-Osservatorio Astronomico di Roma

Laura Penteríccí , Andrea Grazían, Eros Vanzella, Eríc Gawíser, Marío Noníno, Paola Santíní and VUDS team

fesc(LyC) ≈ ionizing radiation flux / non-ionizing radiation flux 900 Å 1400 Å

ionizing radiation production (**physical properties**) vs escape (interaction with **ISM**)
 [e.g. Avedísova 1979, Roy 2014]

- simulations predict ISM conditions for escape (NHI, clumpy medium,

free line of sight/anisotropic escape)

[e.g. Yajíma 2011, Paardekooper 2015, Wíse 2014, Zackrísson 2013, Cen 2015]

- interaction with **IGM** (galaxy environment, re-ionization)

[z~3 IGM transmissivity is ~40%, Inoue 2014]

- LyC leakers are probably low-mass, star-forming galaxies below detection limits

a few massive with active feedback

[e.g. Heckman 2011, Haardt & Madau 2012, Borthakur 2014, Prochaska 2009, Stevans 2014]

challenge: weak signal, low-z contamination, a few favorable lines of sight
 [e.g. Vanzella 2012, Cen2015, Síana 2015, Grazían 2015]
 -> Motivation

- Motivation

- Project idea Chosen sample Method
- Results and implications
- Summary and on-going work

Project idea

sample of spectroscopically confirmed SFGs at z~3 in ECDFS (about 200 redshifts) (FORS,VIMOS GOODS-S MASTER CATALOG + literature
 VUDS | VIMOS Ultra Deep Survey
 VIMOS Ultra Deep Survey
 A deep VIMOS survey of the CANDELS UDS and CDFS fields

MUSYC narrow-band selected LAEs at z~3.1)

- HST coverage at least in 2 bands from CANDELS/GEMS surveys inspect HST images to keep only source in clean regions (blue-red bands, knot colors, PSF) to reduce low-z nearby-source contamination on individual-source basis
- CANDELS/ECDFS multi-wavelength photometry to study physical properties
- measure LyC flux in (archive) narrow-band images covering rest-frame 860-910 Å at the position of the source, within optimized apertures (about PSF, 2xPSF)
- non-ionizing radiation flux from CANDELS/GEMS V606 band flux (global)

removed after cleaning

kept after cleaning

circle radius ~ 1"

70 spectroscopically confirmed SFGs at 3.11<z<3.53 (+ 17 LAEs at z≅3.1) in clean regions (NB PSF!)

- about 50% of the sources are lost for "cleaning"
- V~25, mNB~27 (fesc(LyC)=30%, Inoue2014)
 V~27, mNB~29

Santíní 2015, Grazían 2015

consistent with background

consistent with background

Results and implications

NBs with different depths

not any clear correlation (sub-samples)

fesc(LyC) relative to the intrinsic $fesc(LyC)^{rel} = \left(\frac{f_{NB396}}{f_{V606}}\right)_{rhs} \frac{(L_{v,non-ion} / L_{v,ion})_{int}}{\exp(-\tau_{IGM z})}$

Boutsía 2011, Nestor 2013, Mostardí 2013, Grazían 2015b

Age ^c	c	SFR, 3.05 <z<3.12< th=""></z<3.12<>
(yr)	Z^{d}	fesc ^{intr}
10 ⁶	0.004	1.98
	0.020	1.90
10 ⁷	0.004	3.59
	0.020	4.20
10^{8}	0.004	6.17
	0.020	6.38

70 spectroscopically confirmed SFGs at 3.11<z<3. 3.53 (+ 17 LAEs at z≅3.1) in clean regions (weighted mean 1σ error)

fesc ^{rel} (SFGs) < 0.06 (<0.12)

fesc ^{rel} (LAEs) < 0.90 a few! faint V!

fesc ^{rel} (**LBGs**) = 0.05-0.08 (broad-band selected, zspec) fesc ^{rel} (**LAEs**) = 0.18-0.49 (narrow-band selected, zspec)

fesc ^{rel} (**LBGs**) < 0.05 (broad-band selected, zspec) (*Mostard*í 2013, *Nestor* 2013 **z=2-3**) Keck-NB3420 3σ det limit (PSF=0.7'')= 28.7

(*Boutsía 2011*, **z=3.3**) LBC-U 3σ det limit (PSF=0.9'')= 29.9 - Sample: spectroscopically-confirmed SFGs at z=3 in ECDFS

HST coverage at least in 2 bands, multiwavelength photometry

SFG: -22< M1400 < -19, 1E+8 < M/M $_{\odot}$ < 1E+11

LAEs: -20< M1400 < -19, 1E+8 < M/M_o < 1E+9

- NB flux is measured in aperture $\leq 2 \times PSF$ for sources in **clean**, regions
- Advantage: reduce source confusion

and low-z contamination, highest S/N in NB

- We can set upper limits on fesc(LyC)^{rel} < 0.06 (0.12)
- We do not see any correlation between LyC signal and galaxy properties

- Possible reasons:

LyC escape is low on average in a sample of SFGs SFGs with these physical properties are not LyC leakers leak less than NB detection limit no special line of sight/not enough statistics

- \Rightarrow cleaning
- ⇒ increasing the sample focusing on $\leq 0.8''$ PSF images Thanks

Summary