First Stars and Black Holes in the Reionization Era

Andrea Ferrara

Scuola Normale Superiore, Pisa, Italy & Kavli IPMU, Tokyo, Japan

COSMIC REIONIZATION

Mesinger, AF & Spiegel 2013; Pacucci+14

HI 21CM LINE VIEW

Brightness Temperature Evolution

Mesinger, AF & Spiegel 2013

21CM POWER SPECTRUM

Diving in a hydrogen sea

The world's largest radiotelescope

SKA Headquarters

.. or here ??!!

Castello Carrarese, Padua, Italy Proposed SKA HQ

111

COSMIC REIONIZATION

Planck Collaboration 15

PLANCK POLARIZATION DATA

Robertson+15

Salvaterra, AF, Dayal 2011

SIMULATION RESULTS

GO FAINTER: FRONTIER FIELDS

ADDITIONAL EXPERIMENTS

Cappelluti+12

CIB-CXB CORRELATION

CIB-CXB CROSS-CORRELATION

0.5-2 keV = 3.6 um

Science, 14 JUNE 2013, 340, 6138, 1257

10"

10-1

EDITORS'CHOICE

EDITED BY KRISTEN MUELLER AND MARIA CRUZ

ASTRONOMY Cosmic Correlation

The cosmic infrared background, the integrated infrared light produced by all extragalactic sources in the universe, has been found to exceed the expected emissions from known galaxies, including the most distant ones. To understand the nature of the populations responsible for this excess Cappelluti *et al.* cross-correlated the fluctuations in the infrared and x-ray backgrounds. The infrared background is sensitive to stellar populations, whereas the x-ray background probes radiation from accreting black holes and thermal x-ray emission from hot ionized gas. The

$0.5-2 \text{ keV} - 4.5 \mu m$

detected correlations indicate that at least 15 to 20% of the cosmic infrared background is produced by sources that are powerful x-ray emitters. Based on theoretical calculations, Yue *et al.* propose in a different study that the first cosmic black holes, which formed from direct collapse of the gas in the first galaxy halos, are responsible for the infrared background fluctuations. This hypothesis is consistent with the observed correlation between the infrared and x-ray backgrounds. — MJC *Astrophys. J.* **769**, 68; (2013) *Mon. Not. R. Astron. Soc.* 10.1093/mnras/stt826 (2013).

First Black Holes ?

THE NEED FOR MASSIVE SEEDS

- SMBH of M= $10^9 M_{\odot}$ observed at z=7.085 (t=0.77 Gyr)
- Implications: (a) start early (b) (super-)Eddington rate at all times

$$m_0 = m(t) \exp\left[-\frac{1-\epsilon}{\epsilon} \frac{t(z)}{t_E}\right] \rightarrow \text{Seed masses} > 400 M_{\odot}$$

STELLAR SEEDS	DIRECT COLLAPSE
Continuous gas supply	Gas driven in rapidly (deep potential)
Avoid rad. fdbck depressing accretion rate	Transfer angular momentum
Avoid ejection from halos and loosing BHs	Avoid fragmentation
Avoid overproducing ~ $10^6 M_{\odot}$ holes	Reionization stops DCBH: short Era?

Dijkstra, AF & Mesinger 2014

DCBH ABUNDANCE

\triangle	(i)	fiducial	$J_{\rm crit} = 300$; Starformation occurs in all dark matter halos with $T_{\rm vir} > 10^4$ K
			$(M_{\rm UV,max} = -10.7 \text{ at } z = 10); f_{\rm esc,LW} = 1.0;$ galactic outflows described by Eq 5.
•	(ii)	$M_{\rm UV,max} = -14$	Same as (i), but extrapolate the UV-luminosity function to $M_{\rm UV,max} = -14.0$
	(iii)	$f_{\rm esc,LW} = 0.5$	Same as (i), but with $f_{\rm esc,LW} = 0.2$.
*	(iv)	no winds	Same as (i), but ignore galactic winds (i.e. $r_s = 0$).
0	(v)	$J_{\rm crit} = 100$	Same as (i), but decrease J_{crit} from $J_{\text{crit}} = 300$ to $J_{\text{crit}} = 100$
\odot	(vi)	$J_{\rm crit} = 30$	Same as (i) but use $J_{\rm crit} = 30$ (see text for details)

- ♦ HI 21cm signal from Cosmic Dawn strongly affected by X-ray pre-heating
- ♦ Faint-end of UV LF is steep (α =-2) and shaped by SN feedback
- ♦ More than 80% of photons come from halos with $M_h < 10^9 M_{\odot}$ (H > 32)
- ♦ HFF allow detection of "true" reionization sources and understand radiative feedback
- ♦ NIRB contains the cumulative light of early UF galaxies. Foreground removal?
- ♦ Black hole seeds imprint encoded in the NIRB-X-ray background correlation
- ♦ Abundance of DCBH seeds difficult to estimate, more work required