THE SIZES OF Z ~ 6-8 LENSED GALAXIES FROM THE HUBBLE FRONTIER FIELDS DATA OF ABELL 2744

Kawamata+15, ApJ, in press (astro-ph/1410.1535)

Ryota Kawamata The University of Tokyo

With: Masafumi Ishigaki, Kazuhiro Shimasaku, Masamune Oguri, Masami Ouchi

OUTLINE

Measurements of sizes and magnitudes

Results

Properties of z~6-8 galaxies

The redshift evolution of sizes and its implication for disk formation and evolution

PREVIOUS SAMPLES OF Z~7 & 8^{1/13} BY ACCURATE 2D FIT ARE SMALL

from HUDF12

Ono+13

PREVIOUS SAMPLES OF Z~7 & 8¹⁷¹³ BY ACCURATE 2D FIT ARE SMALL

from HUDF12+HFF

Kawamata+15

HUBBLE FRONTIER FIELDS PI: J. Lotz

Deep and high-resolution observations by HST + Strong gravitational lensing by clusters

HUBBLE FRONTIER FIELDS PI: J. Lotz

Deep and high-resolution observations by HST + Strong gravitational lensing by clusters

ABELL 2744 DATA

Brighter galaxies from the samples in Ishigaki, RK+2015 31 galaxies at Z~6-7 (i-drop) 8 galaxies at Z~8 (Y-drop)

3/13

MASS MODEL CONSTRUCTION^{4/13}

glafic (Oguri 2010)

- Parametric modeling method
- Mass components
 - Cluster dark halos:
 NFW profiles
 - Member galaxies:
 elliptical pseudo-Jaffe models
 External shear
- 24 sets of multiple images

SIZE MEASUREMENT

Fit galaxy light profiles with lensed and distorted Sérsic profiles.

Observed Image

OUTLINE

Measurements of sizes and magnitudes

Results

Properties of z~6-8 galaxies

The redshift evolution of sizes and its implication for disk formation and evolution

SIZE-LUMINOSITY RELATION 6/13

Positive but weak correlation

 Large scatter as expected from the simulated halo spin parameters

DEPENDENCE ON COLOR & MULTIPLICITY

Largest galaxies are mostly red and smallest galaxies are mostly blue.
Galaxies with multiple cores (□, ◊) are bright.

COMPARISON WITH NEARBY GALAXIES

They show similar SFs to the center regions of circumnuclear galaxies where gases are fed along bars

They show similar SFRSDs to clumps in $z\sim2$ SFGs, but are smaller in size

COMPARISON WITH NEARBY GALAXIES

They show similar SFs to the center regions of circumnuclear galaxies where gases are fed along bars

They show similar SFRSDs to clumps in $z\sim2$ SFGs, but are smaller in size

OUTLINE

Measurements of sizes and magnitudes

Results

Properties of z~6-8 galaxies

The redshift evolution of sizes and its implication for disk formation and evolution

PREVIOUS INTERPRETATION ⁹⁷

PREVIOUS INTERPRETATION

Assumption:

the half-light radius scales with the virial radius

One can get information on what halos are traced

9/13

PREVIOUS INTERPRETATION 9/13

Assumption:

the half-light radius scales with the virial radius

One can get information on what halos are traced

Based on the unconfirmed assumption.
 No absolute value for M_{vir} discussed.

ESTIMATING HALO RADII FROM MUV

ESTIMATING HALO RADII FROM MUV

The size ratio of disk to halo is constant at 3.3% over $z\sim2.5-9.5$.

DISK FORMATION MODEL

$$M_{o} + 1998$$

$$\frac{r_{e}}{r_{vir}} = \frac{1.678}{\sqrt{2}} \left(\frac{j_{d}}{m_{d}}\lambda\right) f_{c}(c)^{-1/2} f_{R}(j_{d}/m_{d}, m_{d}, \lambda, c)$$

j_d: angular momentum ratio of disk to halo m_d: mass ratio of disk to halo

||/|3

- λ : spin parameter of halo
- c: concentration parameter of halo

 λ and c are well determined by N-body simulations. (e.g. Bullock+01)

■ jd and md depend on baryonic physics and are not reliably predicted.

The observed size ratio is consistent with $j_d/m_d = 1$

SUMMARY

- Measured sizes of 31 z~6-7 and 8 z~8 lensed galaxies using our own mass map
- The ratio of half-light radius to virial radius is constant at 3.3%, which is consistent with $j_d/m_d = 1$
- Positive but weak correlation between r_{e} and L_{UV}
- Largest galaxies are red, and smallest galaxies are blue
- Galaxies with multiple cores are bright
- Their SFs are similar to those of circumnuclear galaxies

FUTURE WORK

Measure sizes of ~200 z~6-7 and ~50 z~8 galaxies with the complete 6-cluster data

Measure sizes of low-z galaxies with the HFF data