Observations of High-Redshift Galaxies

I.6 micron / 24 orbits / ~50σ

Rychard Bouwens Leiden University

March 16, 2015 Sintra, Portugal: "Back At the Edge of the Universe" "Latest Results from the Deepest Astronomical Surveys"

History and Legacy: "Edge of the Universe" Meetings in Sintra

History and Legacy: "Edge of the Universe" Meetings in Sintra October 2018 **JWST** May 2009 SM4 WFC3 + COS Back At the Edge of the Universe: April 2015

HUDF NICMOS J₁₁₀+H₁₆₀

144 orbits

HUDF WFC3/IR Y105+J125+JH140+H160

255 orbits

Studying Galaxies at the edge of the universe ('high redshift') is interesting!

-- when galaxies grew very rapidly!

Studying Galaxies at the edge of the universe ('high redshift') is interesting!

-- when galaxies grew very rapidly!

-- when the universe is reionized (did galaxies do it?)

Frontier!

How do we identify galaxies in early universe?

How do we identify galaxies in early universe?

Animation available at http://xdf.ucolick.org/

What can we do at present with HST and other state of the art telescopes?

Deep Survey for Faint Galaxies

+ 2 Deep Parallel Fields HUDF09-1 + HUDF09-2

Deep Survey for Faint Galaxies

Wide Surveys for Bright Galaxies

+ 2 Deep Parallel Fields HUDF09-1 + HUDF09-2

+ ERS + pure-parallel BoRG/HIPPIES program

Wide-Area Ground-Based Probes

UDS (Lawrence+2007) 0.74 deg² Y ~ 24.8, J ~ 25.7, K ~ 25.3

(see Bowler+2014/2015)

Frontier Fields Program

(Matt Mountain, Jennifer Lotz)

6 lensing cluster fields
6 deep "blank" fields
840-orbit program
(60 arcmin²)

(28.7 mag, 5σ)

(~50% complete)

How many galaxies can we find at high redshifts?

How many galaxies can we find at high redshifts?

How many galaxies can we find at high redshifts?

How many galaxies can we find at high redshifts?

How many galaxies can we find at high redshifts?

z~9.6 CLASH z~10.8 CLASH z~9 CLASH z~9.2 CLASH

z~9.2 CANDELS z~9.5 CANDELS z~9.5 CANDELS z~9.9 CANDELS z~9.9 CANDELS z~10.2 CANDELS

z~9.2 CANDELS z~9.5 CANDELS z~9.5 CANDELS z~9.9 CANDELS z~9.9 CANDELS z~10.2 CANDELS

z~9.1 CANDELS z~9.0 CANDELS

Many Probable z = 9-10 Galaxies are Known

		z~9.8 HFFs
∣ z~9.6 CLASH _┌	Z~7.2 CANDELS	
z~10.8 CLASH		z~9.3 HFFs
z~9 CLASH	30 z=9-10 galaxies	z~8.9 HFFs
z~9.2 CLASH	<u> </u>	z~8.6 HFFs
		z~8.5 HFFs
z~8.6 HUDF	z~10.2 CANDELS	z~8.7 HFFs
7~86 HUDF		z~8.5 HFFs
7~8.8 HUDF	z~9.1 CANDELS	z~8.6 HFFs
	z~9.0 CANDELS	z~8.7 HFFs
		z~9.0 HFFs
		z~9.0 HFFs
		z~9.0 HFFs
		z~8.4 HFFs

High-Redshift Record-Holder (From Spectroscopy) z = 7.7302 + - 0.0006

Oesch+2015

High-Redshift Record-Holder (From Photometry) z~10.8 Galaxy Candidate behind MACS0647 (Triply Imaged)

Coe et al. 2012, ApJ, accepted

Coe+2013; Pirzkal+2015

Build-up of Galaxies

Luminosity / Star Formation Rate Density

Bouwens+2015 (see also Madau + Dickinson 2015; McLure+2013; Bunker+2004)
Ultraviolet Luminosity Functions

Bouwens+2015; see also Bowler+2015; McLure+2013; Oesch+2012, 2013, 2014; Ishigaki+2014; Finkelstein+2015

Ultraviolet Luminosity Functions

Bouwens+2015; see also Bowler+2015; McLure+2013; Oesch+2012, 2013, 2014; Ishigaki+2014; Finkelstein+2015

Star Formation Rate Functions

(i.e., dust corrected UV Luminosity Functions)

Smit+2012; see also Duncan+2014; Sobral+2014

Galaxy Stellar Mass Functions

Grazian+2015 (see also Duncan+2014; Ilbert+2013; Muzzin+2013; Gonzalez+2011; Lee+2012)

Discovery of Many Very Luminous Galaxies at z~7-10

Especially Bright z=10.2 Galaxy Found over GOODS North \sim 1.5 L*(z=3)

Especially Bright z~8 Galaxy Found over CANDELS EGS

~ 3 L*(z=3)

Bowler+2014

 $\lambda/\mu m$

 $\lambda/\mu m$

Bowler+2014

Finding More Bright z~8-10 Galaxies

Trenti+2015 BoRG_[z910] Bouwens+2015 CANDELS

(480 orbit program)

Follow-Up Program (uses all ACS+WFC3 CANDELS area)

Leverages 1400 arcmin² search area (full CANDELS + 500 arcmin² in additional area)

6 bright z~9-10 galaxies (Oesch+2014) -> 20 bright z~9-10 galaxies

Finding More Bright z~8-10 Galaxies

Trenti+2015 BoRG_[z910] Bouwens+2015 CANDELS

(480 orbit program)

Follow-Up Program

(uses all ACS+WFC3 CANDELS area)

Leverages 1400 arcmin² search area (full CANDELS + 500 arcmin² in additional area)

6 bright z~9-10 galaxies (Oesch+2014) -> 20 bright z~9-10 galaxies

UltraVISTA + UDS + SPLASH + SMUVS

~1.7 deg² search area: \rightarrow 26 mag (Despite minor revolution in the # density for bright galaxies since 2013) Excellent Agreement Found among 2015 Determinations

Bouwens+2015; Bowler+2015; Finkelstein+2015; Bouwens+2007

Growth and Build-up of Faint Galaxies

Ultra-Faint Galaxies Dominate UV Light Production at z~3-10

Luminosity Function Steeper at Early Times

+2013; Schmidt+2014; Ishigaki+2014; Finkelstein+2015

Oesch+2014

Finding More Faint z~8-10 Galaxies

Frontier Fields Program

(Matt Mountain, Jennifer Lotz)

6 lensing cluster fields
6 deep "blank" fields
840-orbit program (60 arcmin²)

(28.7 mag, 5σ)

(~50% complete)

New Information on the Reionization of the Universe

New Planck results suggest a less lonized Universe at z > 7 (τ consistent with UV LF evolution)

Planck Consortium 2015; Robertson+2015; see also Choudhury+2015

Increasing Statistics Available on Prevalence of Lyα Emission in z=7-8 Galaxies

Schenker+2014; see also Pentericci+2011/2014; Tilvi+2014; Treu+2013; Stark +2010; Fontana+2010; Caruana+2012, 2014; Schenker et al. 2012; Ono+2012

Self-consistent Picture of Cosmic Reionization now available

Robertson+2015

z~4-9 Galaxies Also Show Strong Nebular Line Emission: Hα + [OIII]

Nebular Emission lines (([OIII], H α) Prominent in z>1 Galaxies

Rest-frame EWs ~ 1000 Angstroms

van der Wel+2011; see also Atek+2011; Brammer+2012

Nebular Emission Lines ([OIII], H α) are Especially Bright at z~4-8

Smit+2014

Renske Smit

Substantially Improved Photometric Redshifts (useful for ALMA follow-up)

Narrow redshift window where [4.5] band misses [OIII]+Hα

(~30 sources identified with extreme colors)

Substantially Improved Photometric Redshifts (useful for ALMA follow-up)

Narrow redshift window where [4.5] band misses [OIII]+Hα

(~30 sources identified with extreme colors)

Metallicity, SFR, or Ionization State

Substantially Improved Photometric Redshifts (useful for ALMA follow-up)

Narrow redshift window where [4.5] band misses [OIII]+Hα

(~30 sources identified with extreme colors)

Metallicity, SFR, or Ionization State

Uncertain Stellar Mass Estimates (if improperly corrected)

Continuing Challenges....

Field-to-Field Variations are Large!

Bouwens+2015

Field-to-Field Variations are Large!

Bouwens+2015
Deriving Physical Parameters (Masses, Metallicities, Gas Masses, etc.)

Deriving Physical Parameters (Masses, Metallicities, Gas Masses, etc.)

Part of the Answer = Deep Spectroscopy

arameters (Masses, Metallicities, as Masses, etc.)

Part of the Answer = Deep Spectroscopy

Deriving Physical Parameters (Masses, Metallicities, Gas Masses, etc.)

Deriving Physical Parameters (Masses, Metallicities, Gas Masses, etc.)

Part of the Answer = Deep ALMA Observations

Dust Continuum

Gas Masses from CO lines

SFRs / Other Information from Cooling Lines

Objects like this appear to be typical

Observations of the High-Redshift Universe: Summary

Current facilities (HST with ACS+WFC3/IR) are allowing for the selection of large >10⁴object samples of galaxies to $z\sim11$, with spectroscopic redshifts out as high as z=7.73.

Huge progress has been made in understanding galaxy growth with the Hubble Space Telescope... in terms of the UV luminosity density, UV LFs, and galaxy stellar mass functions.

Modest numbers of intrinsically highly luminous z~7-10 galaxies have been recently discovered. The existence of these objects suggest little impact of dust or quenching on UV luminosities of these rare, high-σ peaks

Current observations suggest the faint-end slope of the UV LF becomes increasingly steep at z>6. The UV luminosity density shows moderately smooth evolution to z~9, but may show faster evolution at z>9.

High-redshift EW nebular emission lines are particularly ubiquitous in z>8 galaxies.

Key challenges for progress in galaxy formation include achieving a more physical understanding of galaxies, coping with large field-to-field variance, and obtaining a better understanding of strong nebular emission at z>~2-8.