The Nature of the MicroJy Radio Source Population E. F. Ocran¹, A. R. Taylor ^{1 2}, M. Vaccari¹

 Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7537, South Africa
Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701,

South Africa

Abstract

We explore the nature of the microJy radio source population using the deepest ever image obtained at 610 MHz with the GMRT covering 1 deg² within the ELAIS N1 field down to a rms noise of 10 μ Jy and detecting 2800 sources. These observations are complemented by a JVLA 5 GHz image over a smaller area (0.1 deg²) down to a rms noise of 1 μ Jy. These data probe the radio source population at flux densities well below the regime dominated by classical radio galaxies and Active Galactic Nuclei. We have matched 85% of the radio population to Spitzer/IRAC and obtained a redshift estimate for 63%. For the sources with redshifts, we have carried out a multi-wavelength study using Optical, Near-Infrared, Spitzer and Herschel data. We use a classification scheme based on X-ray emission, QSO-like SDSS spectroscopy, IRAC colours, and radio-loud AGN flags defined by the logarithmic ratio of the Far-IR to radio flux densities. On the basis of this classification, we find that at least 20% of the sources with redshifts are AGNs while the remaining are adopted as SFGs. We explore the evolution of the Far-IR radio correlation of our SFGs with redshift by binning in radio and infrared luminosities and we find evidence that the median value of the far-IR/radio luminosity decreases with increasing radio luminosity.